Solve for a
a=ek-1
k\neq 0
Solve for k
k=\frac{a+1}{e}
a\neq -1
Share
Copied to clipboard
ek\left(2+\sqrt{3}\right)=\left(a+1\right)\left(3^{\frac{1}{2}}+2\right)
Variable a cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by a+1.
2ek+ek\sqrt{3}=\left(a+1\right)\left(3^{\frac{1}{2}}+2\right)
Use the distributive property to multiply ek by 2+\sqrt{3}.
2ek+ek\sqrt{3}=a\times 3^{\frac{1}{2}}+2a+3^{\frac{1}{2}}+2
Use the distributive property to multiply a+1 by 3^{\frac{1}{2}}+2.
a\times 3^{\frac{1}{2}}+2a+3^{\frac{1}{2}}+2=2ek+ek\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
a\times 3^{\frac{1}{2}}+2a+2=2ek+ek\sqrt{3}-3^{\frac{1}{2}}
Subtract 3^{\frac{1}{2}} from both sides.
a\times 3^{\frac{1}{2}}+2a=2ek+ek\sqrt{3}-3^{\frac{1}{2}}-2
Subtract 2 from both sides.
\sqrt{3}a+2a=e\sqrt{3}k+2ek-\sqrt{3}-2
Reorder the terms.
\left(\sqrt{3}+2\right)a=e\sqrt{3}k+2ek-\sqrt{3}-2
Combine all terms containing a.
\frac{\left(\sqrt{3}+2\right)a}{\sqrt{3}+2}=\frac{e\sqrt{3}k+2ek-\sqrt{3}-2}{\sqrt{3}+2}
Divide both sides by 2+\sqrt{3}.
a=\frac{e\sqrt{3}k+2ek-\sqrt{3}-2}{\sqrt{3}+2}
Dividing by 2+\sqrt{3} undoes the multiplication by 2+\sqrt{3}.
a=ek-1
Divide e\sqrt{3}k+2ek-\sqrt{3}-2 by 2+\sqrt{3}.
a=ek-1\text{, }a\neq -1
Variable a cannot be equal to -1.
ek\left(2+\sqrt{3}\right)=\left(a+1\right)\left(3^{\frac{1}{2}}+2\right)
Multiply both sides of the equation by a+1.
2ek+ek\sqrt{3}=\left(a+1\right)\left(3^{\frac{1}{2}}+2\right)
Use the distributive property to multiply ek by 2+\sqrt{3}.
2ek+ek\sqrt{3}=a\times 3^{\frac{1}{2}}+2a+3^{\frac{1}{2}}+2
Use the distributive property to multiply a+1 by 3^{\frac{1}{2}}+2.
e\sqrt{3}k+2ek=\sqrt{3}a+2a+\sqrt{3}+2
Reorder the terms.
\left(e\sqrt{3}+2e\right)k=\sqrt{3}a+2a+\sqrt{3}+2
Combine all terms containing k.
\frac{\left(e\sqrt{3}+2e\right)k}{e\sqrt{3}+2e}=\frac{\sqrt{3}a+2a+\sqrt{3}+2}{e\sqrt{3}+2e}
Divide both sides by e\sqrt{3}+2e.
k=\frac{\sqrt{3}a+2a+\sqrt{3}+2}{e\sqrt{3}+2e}
Dividing by e\sqrt{3}+2e undoes the multiplication by e\sqrt{3}+2e.
k=\frac{a+1}{e}
Divide \sqrt{3}a+2a+\sqrt{3}+2 by e\sqrt{3}+2e.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}