Skip to main content
Solve for a
Tick mark Image
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

ek\left(2+\sqrt{3}\right)=\left(a+1\right)\left(3^{\frac{1}{2}}+2\right)
Variable a cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by a+1.
2ek+ek\sqrt{3}=\left(a+1\right)\left(3^{\frac{1}{2}}+2\right)
Use the distributive property to multiply ek by 2+\sqrt{3}.
2ek+ek\sqrt{3}=a\times 3^{\frac{1}{2}}+2a+3^{\frac{1}{2}}+2
Use the distributive property to multiply a+1 by 3^{\frac{1}{2}}+2.
a\times 3^{\frac{1}{2}}+2a+3^{\frac{1}{2}}+2=2ek+ek\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
a\times 3^{\frac{1}{2}}+2a+2=2ek+ek\sqrt{3}-3^{\frac{1}{2}}
Subtract 3^{\frac{1}{2}} from both sides.
a\times 3^{\frac{1}{2}}+2a=2ek+ek\sqrt{3}-3^{\frac{1}{2}}-2
Subtract 2 from both sides.
\sqrt{3}a+2a=e\sqrt{3}k+2ek-\sqrt{3}-2
Reorder the terms.
\left(\sqrt{3}+2\right)a=e\sqrt{3}k+2ek-\sqrt{3}-2
Combine all terms containing a.
\frac{\left(\sqrt{3}+2\right)a}{\sqrt{3}+2}=\frac{e\sqrt{3}k+2ek-\sqrt{3}-2}{\sqrt{3}+2}
Divide both sides by 2+\sqrt{3}.
a=\frac{e\sqrt{3}k+2ek-\sqrt{3}-2}{\sqrt{3}+2}
Dividing by 2+\sqrt{3} undoes the multiplication by 2+\sqrt{3}.
a=ek-1
Divide e\sqrt{3}k+2ek-\sqrt{3}-2 by 2+\sqrt{3}.
a=ek-1\text{, }a\neq -1
Variable a cannot be equal to -1.
ek\left(2+\sqrt{3}\right)=\left(a+1\right)\left(3^{\frac{1}{2}}+2\right)
Multiply both sides of the equation by a+1.
2ek+ek\sqrt{3}=\left(a+1\right)\left(3^{\frac{1}{2}}+2\right)
Use the distributive property to multiply ek by 2+\sqrt{3}.
2ek+ek\sqrt{3}=a\times 3^{\frac{1}{2}}+2a+3^{\frac{1}{2}}+2
Use the distributive property to multiply a+1 by 3^{\frac{1}{2}}+2.
e\sqrt{3}k+2ek=\sqrt{3}a+2a+\sqrt{3}+2
Reorder the terms.
\left(e\sqrt{3}+2e\right)k=\sqrt{3}a+2a+\sqrt{3}+2
Combine all terms containing k.
\frac{\left(e\sqrt{3}+2e\right)k}{e\sqrt{3}+2e}=\frac{\sqrt{3}a+2a+\sqrt{3}+2}{e\sqrt{3}+2e}
Divide both sides by e\sqrt{3}+2e.
k=\frac{\sqrt{3}a+2a+\sqrt{3}+2}{e\sqrt{3}+2e}
Dividing by e\sqrt{3}+2e undoes the multiplication by e\sqrt{3}+2e.
k=\frac{a+1}{e}
Divide \sqrt{3}a+2a+\sqrt{3}+2 by e\sqrt{3}+2e.