\operatorname { dr } _ { L } x ^ { 4 } + \frac { 1 } { x ^ { 4 } } = 194
Solve for d (complex solution)
\left\{\begin{matrix}d=-\frac{1-194x^{4}}{r_{L}x^{8}}\text{, }&x\neq 0\text{ and }r_{L}\neq 0\\d\in \mathrm{C}\text{, }&\left(x=\frac{194^{\frac{3}{4}}}{194}\text{ or }x=\frac{194^{\frac{3}{4}}i}{194}\text{ or }x=-\frac{194^{\frac{3}{4}}}{194}\text{ or }x=-\frac{194^{\frac{3}{4}}i}{194}\right)\text{ and }r_{L}=0\end{matrix}\right.
Solve for r_L (complex solution)
\left\{\begin{matrix}r_{L}=-\frac{1-194x^{4}}{dx^{8}}\text{, }&x\neq 0\text{ and }d\neq 0\\r_{L}\in \mathrm{C}\text{, }&\left(x=\frac{194^{\frac{3}{4}}}{194}\text{ or }x=\frac{194^{\frac{3}{4}}i}{194}\text{ or }x=-\frac{194^{\frac{3}{4}}}{194}\text{ or }x=-\frac{194^{\frac{3}{4}}i}{194}\right)\text{ and }d=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=-\frac{1-194x^{4}}{r_{L}x^{8}}\text{, }&x\neq 0\text{ and }r_{L}\neq 0\\d\in \mathrm{R}\text{, }&r_{L}=0\text{ and }|x|=\frac{194^{\frac{3}{4}}}{194}\end{matrix}\right.
Solve for r_L
\left\{\begin{matrix}r_{L}=-\frac{1-194x^{4}}{dx^{8}}\text{, }&x\neq 0\text{ and }d\neq 0\\r_{L}\in \mathrm{R}\text{, }&d=0\text{ and }|x|=\frac{194^{\frac{3}{4}}}{194}\end{matrix}\right.
Graph
Share
Copied to clipboard
dr_{L}x^{4}x^{4}+1=194x^{4}
Multiply both sides of the equation by x^{4}.
dr_{L}x^{8}+1=194x^{4}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
dr_{L}x^{8}=194x^{4}-1
Subtract 1 from both sides.
r_{L}x^{8}d=194x^{4}-1
The equation is in standard form.
\frac{r_{L}x^{8}d}{r_{L}x^{8}}=\frac{194x^{4}-1}{r_{L}x^{8}}
Divide both sides by r_{L}x^{8}.
d=\frac{194x^{4}-1}{r_{L}x^{8}}
Dividing by r_{L}x^{8} undoes the multiplication by r_{L}x^{8}.
dr_{L}x^{4}x^{4}+1=194x^{4}
Multiply both sides of the equation by x^{4}.
dr_{L}x^{8}+1=194x^{4}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
dr_{L}x^{8}=194x^{4}-1
Subtract 1 from both sides.
dx^{8}r_{L}=194x^{4}-1
The equation is in standard form.
\frac{dx^{8}r_{L}}{dx^{8}}=\frac{194x^{4}-1}{dx^{8}}
Divide both sides by dx^{8}.
r_{L}=\frac{194x^{4}-1}{dx^{8}}
Dividing by dx^{8} undoes the multiplication by dx^{8}.
dr_{L}x^{4}x^{4}+1=194x^{4}
Multiply both sides of the equation by x^{4}.
dr_{L}x^{8}+1=194x^{4}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
dr_{L}x^{8}=194x^{4}-1
Subtract 1 from both sides.
r_{L}x^{8}d=194x^{4}-1
The equation is in standard form.
\frac{r_{L}x^{8}d}{r_{L}x^{8}}=\frac{194x^{4}-1}{r_{L}x^{8}}
Divide both sides by r_{L}x^{8}.
d=\frac{194x^{4}-1}{r_{L}x^{8}}
Dividing by r_{L}x^{8} undoes the multiplication by r_{L}x^{8}.
dr_{L}x^{4}x^{4}+1=194x^{4}
Multiply both sides of the equation by x^{4}.
dr_{L}x^{8}+1=194x^{4}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
dr_{L}x^{8}=194x^{4}-1
Subtract 1 from both sides.
dx^{8}r_{L}=194x^{4}-1
The equation is in standard form.
\frac{dx^{8}r_{L}}{dx^{8}}=\frac{194x^{4}-1}{dx^{8}}
Divide both sides by dx^{8}.
r_{L}=\frac{194x^{4}-1}{dx^{8}}
Dividing by dx^{8} undoes the multiplication by dx^{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}