Skip to main content
Solve for x
Tick mark Image
Solve for g
Tick mark Image
Graph

Share

3\cot(g)\left(2x-\pi \right)=3\cot(g)\left(x+\frac{\pi }{3}\right)
Multiply both sides of the equation by 3.
6\cot(g)x-3\cot(g)\pi =3\cot(g)\left(x+\frac{\pi }{3}\right)
Use the distributive property to multiply 3\cot(g) by 2x-\pi .
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+3\cot(g)\times \frac{\pi }{3}
Use the distributive property to multiply 3\cot(g) by x+\frac{\pi }{3}.
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+\frac{3\pi }{3}\cot(g)
Express 3\times \frac{\pi }{3} as a single fraction.
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+\pi \cot(g)
Cancel out 3 and 3.
6\cot(g)x-3\cot(g)\pi -3\cot(g)x=\pi \cot(g)
Subtract 3\cot(g)x from both sides.
3\cot(g)x-3\cot(g)\pi =\pi \cot(g)
Combine 6\cot(g)x and -3\cot(g)x to get 3\cot(g)x.
3\cot(g)x=\pi \cot(g)+3\cot(g)\pi
Add 3\cot(g)\pi to both sides.
3\cot(g)x=4\pi \cot(g)
Combine \pi \cot(g) and 3\cot(g)\pi to get 4\pi \cot(g).
\frac{3\cot(g)x}{3\cot(g)}=\frac{4\pi \cot(g)}{3\cot(g)}
Divide both sides by 3\cot(g).
x=\frac{4\pi \cot(g)}{3\cot(g)}
Dividing by 3\cot(g) undoes the multiplication by 3\cot(g).
x=\frac{4\pi }{3}
Divide 4\pi \cot(g) by 3\cot(g).