Solve for D
\left\{\begin{matrix}D=\frac{4s\tan(g)}{\theta }\text{, }&\exists n_{3}\in \mathrm{Z}\text{ : }\left(g>\frac{\pi n_{3}}{2}\text{ and }g<\frac{\pi n_{3}}{2}+\frac{\pi }{2}\right)\text{ and }\theta \neq 0\text{ and }s\neq 0\\D\neq 0\text{, }&\left(\exists n_{2}\in \mathrm{Z}\text{ : }g=\pi n_{2}+\frac{\pi }{2}\text{ and }s=0\right)\text{ or }\left(\theta =0\text{ and }s=0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }g=\pi n_{1}\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
\cot(g)D\theta =2\times 2s
Variable D cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2D, the least common multiple of 2,D.
\cot(g)D\theta =4s
Multiply 2 and 2 to get 4.
\theta \cot(g)D=4s
The equation is in standard form.
\frac{\theta \cot(g)D}{\theta \cot(g)}=\frac{4s}{\theta \cot(g)}
Divide both sides by \cot(g)\theta .
D=\frac{4s}{\theta \cot(g)}
Dividing by \cot(g)\theta undoes the multiplication by \cot(g)\theta .
D=\frac{4s\tan(g)}{\theta }
Divide 4s by \cot(g)\theta .
D=\frac{4s\tan(g)}{\theta }\text{, }D\neq 0
Variable D cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}