Solve for c
c=-\frac{12}{g_{x}o}
g_{x}\neq 0\text{ and }o\neq 0
Solve for g_x
g_{x}=-\frac{12}{co}
o\neq 0\text{ and }c\neq 0
Share
Copied to clipboard
\frac{g_{x}o}{8}c=-\frac{3}{2}
The equation is in standard form.
\frac{8\times \frac{g_{x}o}{8}c}{g_{x}o}=\frac{-\frac{3}{2}\times 8}{g_{x}o}
Divide both sides by \frac{1}{8}og_{x}.
c=\frac{-\frac{3}{2}\times 8}{g_{x}o}
Dividing by \frac{1}{8}og_{x} undoes the multiplication by \frac{1}{8}og_{x}.
c=-\frac{12}{g_{x}o}
Divide -\frac{3}{2} by \frac{1}{8}og_{x}.
\frac{co}{8}g_{x}=-\frac{3}{2}
The equation is in standard form.
\frac{8\times \frac{co}{8}g_{x}}{co}=\frac{-\frac{3}{2}\times 8}{co}
Divide both sides by \frac{1}{8}co.
g_{x}=\frac{-\frac{3}{2}\times 8}{co}
Dividing by \frac{1}{8}co undoes the multiplication by \frac{1}{8}co.
g_{x}=-\frac{12}{co}
Divide -\frac{3}{2} by \frac{1}{8}co.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}