Skip to main content
Solve for a
Tick mark Image
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

arcs=\frac{\left(3+\sqrt{2}\right)\left(1-2\sqrt{2}\right)}{\left(1+2\sqrt{2}\right)\left(1-2\sqrt{2}\right)}
Rationalize the denominator of \frac{3+\sqrt{2}}{1+2\sqrt{2}} by multiplying numerator and denominator by 1-2\sqrt{2}.
arcs=\frac{\left(3+\sqrt{2}\right)\left(1-2\sqrt{2}\right)}{1^{2}-\left(2\sqrt{2}\right)^{2}}
Consider \left(1+2\sqrt{2}\right)\left(1-2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
arcs=\frac{\left(3+\sqrt{2}\right)\left(1-2\sqrt{2}\right)}{1-\left(2\sqrt{2}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
arcs=\frac{\left(3+\sqrt{2}\right)\left(1-2\sqrt{2}\right)}{1-2^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
arcs=\frac{\left(3+\sqrt{2}\right)\left(1-2\sqrt{2}\right)}{1-4\left(\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
arcs=\frac{\left(3+\sqrt{2}\right)\left(1-2\sqrt{2}\right)}{1-4\times 2}
The square of \sqrt{2} is 2.
arcs=\frac{\left(3+\sqrt{2}\right)\left(1-2\sqrt{2}\right)}{1-8}
Multiply 4 and 2 to get 8.
arcs=\frac{\left(3+\sqrt{2}\right)\left(1-2\sqrt{2}\right)}{-7}
Subtract 8 from 1 to get -7.
arcs=\frac{3-5\sqrt{2}-2\left(\sqrt{2}\right)^{2}}{-7}
Use the distributive property to multiply 3+\sqrt{2} by 1-2\sqrt{2} and combine like terms.
arcs=\frac{3-5\sqrt{2}-2\times 2}{-7}
The square of \sqrt{2} is 2.
arcs=\frac{3-5\sqrt{2}-4}{-7}
Multiply -2 and 2 to get -4.
arcs=\frac{-1-5\sqrt{2}}{-7}
Subtract 4 from 3 to get -1.
arcs=\frac{1+5\sqrt{2}}{7}
Multiply both numerator and denominator by -1.
arcs=\frac{1}{7}+\frac{5}{7}\sqrt{2}
Divide each term of 1+5\sqrt{2} by 7 to get \frac{1}{7}+\frac{5}{7}\sqrt{2}.
crsa=\frac{5\sqrt{2}+1}{7}
The equation is in standard form.
\frac{crsa}{crs}=\frac{5\sqrt{2}+1}{7crs}
Divide both sides by rcs.
a=\frac{5\sqrt{2}+1}{7crs}
Dividing by rcs undoes the multiplication by rcs.
arcs=\frac{\left(3+\sqrt{2}\right)\left(1-2\sqrt{2}\right)}{\left(1+2\sqrt{2}\right)\left(1-2\sqrt{2}\right)}
Rationalize the denominator of \frac{3+\sqrt{2}}{1+2\sqrt{2}} by multiplying numerator and denominator by 1-2\sqrt{2}.
arcs=\frac{\left(3+\sqrt{2}\right)\left(1-2\sqrt{2}\right)}{1^{2}-\left(2\sqrt{2}\right)^{2}}
Consider \left(1+2\sqrt{2}\right)\left(1-2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
arcs=\frac{\left(3+\sqrt{2}\right)\left(1-2\sqrt{2}\right)}{1-\left(2\sqrt{2}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
arcs=\frac{\left(3+\sqrt{2}\right)\left(1-2\sqrt{2}\right)}{1-2^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
arcs=\frac{\left(3+\sqrt{2}\right)\left(1-2\sqrt{2}\right)}{1-4\left(\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
arcs=\frac{\left(3+\sqrt{2}\right)\left(1-2\sqrt{2}\right)}{1-4\times 2}
The square of \sqrt{2} is 2.
arcs=\frac{\left(3+\sqrt{2}\right)\left(1-2\sqrt{2}\right)}{1-8}
Multiply 4 and 2 to get 8.
arcs=\frac{\left(3+\sqrt{2}\right)\left(1-2\sqrt{2}\right)}{-7}
Subtract 8 from 1 to get -7.
arcs=\frac{3-5\sqrt{2}-2\left(\sqrt{2}\right)^{2}}{-7}
Use the distributive property to multiply 3+\sqrt{2} by 1-2\sqrt{2} and combine like terms.
arcs=\frac{3-5\sqrt{2}-2\times 2}{-7}
The square of \sqrt{2} is 2.
arcs=\frac{3-5\sqrt{2}-4}{-7}
Multiply -2 and 2 to get -4.
arcs=\frac{-1-5\sqrt{2}}{-7}
Subtract 4 from 3 to get -1.
arcs=\frac{1+5\sqrt{2}}{7}
Multiply both numerator and denominator by -1.
arcs=\frac{1}{7}+\frac{5}{7}\sqrt{2}
Divide each term of 1+5\sqrt{2} by 7 to get \frac{1}{7}+\frac{5}{7}\sqrt{2}.
arsc=\frac{5\sqrt{2}+1}{7}
The equation is in standard form.
\frac{arsc}{ars}=\frac{5\sqrt{2}+1}{7ars}
Divide both sides by ars.
c=\frac{5\sqrt{2}+1}{7ars}
Dividing by ars undoes the multiplication by ars.