Solve for a
a=\frac{4}{3n_{2}\alpha }
\alpha \neq 0\text{ and }n_{2}\neq 0
Solve for n_2
n_{2}=\frac{4}{3a\alpha }
\alpha \neq 0\text{ and }a\neq 0
Share
Copied to clipboard
n_{2}\alpha a=\frac{4}{3}
The equation is in standard form.
\frac{n_{2}\alpha a}{n_{2}\alpha }=\frac{\frac{4}{3}}{n_{2}\alpha }
Divide both sides by n_{2}\alpha .
a=\frac{\frac{4}{3}}{n_{2}\alpha }
Dividing by n_{2}\alpha undoes the multiplication by n_{2}\alpha .
a=\frac{4}{3n_{2}\alpha }
Divide \frac{4}{3} by n_{2}\alpha .
a\alpha n_{2}=\frac{4}{3}
The equation is in standard form.
\frac{a\alpha n_{2}}{a\alpha }=\frac{\frac{4}{3}}{a\alpha }
Divide both sides by a\alpha .
n_{2}=\frac{\frac{4}{3}}{a\alpha }
Dividing by a\alpha undoes the multiplication by a\alpha .
n_{2}=\frac{4}{3a\alpha }
Divide \frac{4}{3} by a\alpha .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}