Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

Re(\frac{1\left(4-i\right)}{\left(4+i\right)\left(4-i\right)})
Multiply both numerator and denominator of \frac{1}{4+i} by the complex conjugate of the denominator, 4-i.
Re(\frac{1\left(4-i\right)}{4^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(4-i\right)}{17})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4-i}{17})
Multiply 1 and 4-i to get 4-i.
Re(\frac{4}{17}-\frac{1}{17}i)
Divide 4-i by 17 to get \frac{4}{17}-\frac{1}{17}i.
\frac{4}{17}
The real part of \frac{4}{17}-\frac{1}{17}i is \frac{4}{17}.
Re(Re(\frac{1\left(4-i\right)}{\left(4+i\right)\left(4-i\right)}))
Multiply both numerator and denominator of \frac{1}{4+i} by the complex conjugate of the denominator, 4-i.
Re(Re(\frac{1\left(4-i\right)}{4^{2}-i^{2}}))
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(Re(\frac{1\left(4-i\right)}{17}))
By definition, i^{2} is -1. Calculate the denominator.
Re(Re(\frac{4-i}{17}))
Multiply 1 and 4-i to get 4-i.
Re(Re(\frac{4}{17}-\frac{1}{17}i))
Divide 4-i by 17 to get \frac{4}{17}-\frac{1}{17}i.
Re(\frac{4}{17})
The real part of \frac{4}{17}-\frac{1}{17}i is \frac{4}{17}.
\frac{4}{17}
The real part of \frac{4}{17} is \frac{4}{17}.