Solve for P (complex solution)
\left\{\begin{matrix}P=-\frac{3\left(5x-6\right)}{4R\left(7x+6\right)}\text{, }&x\neq -\frac{6}{7}\text{ and }R\neq 0\\P\in \mathrm{C}\text{, }&x=\frac{6}{5}\text{ and }R=0\end{matrix}\right.
Solve for R (complex solution)
\left\{\begin{matrix}R=-\frac{3\left(5x-6\right)}{4P\left(7x+6\right)}\text{, }&x\neq -\frac{6}{7}\text{ and }P\neq 0\\R\in \mathrm{C}\text{, }&x=\frac{6}{5}\text{ and }P=0\end{matrix}\right.
Solve for P
\left\{\begin{matrix}P=-\frac{3\left(5x-6\right)}{4R\left(7x+6\right)}\text{, }&x\neq -\frac{6}{7}\text{ and }R\neq 0\\P\in \mathrm{R}\text{, }&x=\frac{6}{5}\text{ and }R=0\end{matrix}\right.
Solve for R
\left\{\begin{matrix}R=-\frac{3\left(5x-6\right)}{4P\left(7x+6\right)}\text{, }&x\neq -\frac{6}{7}\text{ and }P\neq 0\\R\in \mathrm{R}\text{, }&x=\frac{6}{5}\text{ and }P=0\end{matrix}\right.
Graph
Share
Copied to clipboard
6RP\times \frac{2}{3}\left(2-\left(\frac{x}{3}+6\right)-2\left(x-1\right)\right)=5x-6
Multiply both sides of the equation by 6, the least common multiple of 3,6.
4RP\left(2-\left(\frac{x}{3}+6\right)-2\left(x-1\right)\right)=5x-6
Multiply 6 and \frac{2}{3} to get 4.
4RP\left(2-\frac{x}{3}-6-2\left(x-1\right)\right)=5x-6
To find the opposite of \frac{x}{3}+6, find the opposite of each term.
4RP\left(-4-\frac{x}{3}-2\left(x-1\right)\right)=5x-6
Subtract 6 from 2 to get -4.
4RP\left(-4-\frac{x}{3}-2x+2\right)=5x-6
Use the distributive property to multiply -2 by x-1.
4RP\left(-2-\frac{x}{3}-2x\right)=5x-6
Add -4 and 2 to get -2.
-8PR-4PR\times \frac{x}{3}-8PRx=5x-6
Use the distributive property to multiply 4RP by -2-\frac{x}{3}-2x.
-8PR+\frac{-4x}{3}PR-8PRx=5x-6
Express -4\times \frac{x}{3} as a single fraction.
-8PR+\frac{-4xP}{3}R-8PRx=5x-6
Express \frac{-4x}{3}P as a single fraction.
-8PR+\frac{-4xPR}{3}-8PRx=5x-6
Express \frac{-4xP}{3}R as a single fraction.
-24PR-4xPR-24PRx=15x-18
Multiply both sides of the equation by 3.
-24PR-28xPR=15x-18
Combine -4xPR and -24PRx to get -28xPR.
\left(-24R-28xR\right)P=15x-18
Combine all terms containing P.
\left(-28Rx-24R\right)P=15x-18
The equation is in standard form.
\frac{\left(-28Rx-24R\right)P}{-28Rx-24R}=\frac{15x-18}{-28Rx-24R}
Divide both sides by -24R-28xR.
P=\frac{15x-18}{-28Rx-24R}
Dividing by -24R-28xR undoes the multiplication by -24R-28xR.
P=-\frac{3\left(5x-6\right)}{4R\left(7x+6\right)}
Divide 15x-18 by -24R-28xR.
6RP\times \frac{2}{3}\left(2-\left(\frac{x}{3}+6\right)-2\left(x-1\right)\right)=5x-6
Multiply both sides of the equation by 6, the least common multiple of 3,6.
4RP\left(2-\left(\frac{x}{3}+6\right)-2\left(x-1\right)\right)=5x-6
Multiply 6 and \frac{2}{3} to get 4.
4RP\left(2-\frac{x}{3}-6-2\left(x-1\right)\right)=5x-6
To find the opposite of \frac{x}{3}+6, find the opposite of each term.
4RP\left(-4-\frac{x}{3}-2\left(x-1\right)\right)=5x-6
Subtract 6 from 2 to get -4.
4RP\left(-4-\frac{x}{3}-2x+2\right)=5x-6
Use the distributive property to multiply -2 by x-1.
4RP\left(-2-\frac{x}{3}-2x\right)=5x-6
Add -4 and 2 to get -2.
-8PR-4PR\times \frac{x}{3}-8PRx=5x-6
Use the distributive property to multiply 4RP by -2-\frac{x}{3}-2x.
-8PR+\frac{-4x}{3}PR-8PRx=5x-6
Express -4\times \frac{x}{3} as a single fraction.
-8PR+\frac{-4xP}{3}R-8PRx=5x-6
Express \frac{-4x}{3}P as a single fraction.
-8PR+\frac{-4xPR}{3}-8PRx=5x-6
Express \frac{-4xP}{3}R as a single fraction.
-24PR-4xPR-24PRx=15x-18
Multiply both sides of the equation by 3.
-24PR-28xPR=15x-18
Combine -4xPR and -24PRx to get -28xPR.
\left(-24P-28xP\right)R=15x-18
Combine all terms containing R.
\left(-28Px-24P\right)R=15x-18
The equation is in standard form.
\frac{\left(-28Px-24P\right)R}{-28Px-24P}=\frac{15x-18}{-28Px-24P}
Divide both sides by -24P-28xP.
R=\frac{15x-18}{-28Px-24P}
Dividing by -24P-28xP undoes the multiplication by -24P-28xP.
R=-\frac{3\left(5x-6\right)}{4P\left(7x+6\right)}
Divide 15x-18 by -24P-28xP.
6RP\times \frac{2}{3}\left(2-\left(\frac{x}{3}+6\right)-2\left(x-1\right)\right)=5x-6
Multiply both sides of the equation by 6, the least common multiple of 3,6.
4RP\left(2-\left(\frac{x}{3}+6\right)-2\left(x-1\right)\right)=5x-6
Multiply 6 and \frac{2}{3} to get 4.
4RP\left(2-\frac{x}{3}-6-2\left(x-1\right)\right)=5x-6
To find the opposite of \frac{x}{3}+6, find the opposite of each term.
4RP\left(-4-\frac{x}{3}-2\left(x-1\right)\right)=5x-6
Subtract 6 from 2 to get -4.
4RP\left(-4-\frac{x}{3}-2x+2\right)=5x-6
Use the distributive property to multiply -2 by x-1.
4RP\left(-2-\frac{x}{3}-2x\right)=5x-6
Add -4 and 2 to get -2.
-8PR-4PR\times \frac{x}{3}-8PRx=5x-6
Use the distributive property to multiply 4RP by -2-\frac{x}{3}-2x.
-8PR+\frac{-4x}{3}PR-8PRx=5x-6
Express -4\times \frac{x}{3} as a single fraction.
-8PR+\frac{-4xP}{3}R-8PRx=5x-6
Express \frac{-4x}{3}P as a single fraction.
-8PR+\frac{-4xPR}{3}-8PRx=5x-6
Express \frac{-4xP}{3}R as a single fraction.
-24PR-4xPR-24PRx=15x-18
Multiply both sides of the equation by 3.
-24PR-28xPR=15x-18
Combine -4xPR and -24PRx to get -28xPR.
\left(-24R-28xR\right)P=15x-18
Combine all terms containing P.
\left(-28Rx-24R\right)P=15x-18
The equation is in standard form.
\frac{\left(-28Rx-24R\right)P}{-28Rx-24R}=\frac{15x-18}{-28Rx-24R}
Divide both sides by -24R-28xR.
P=\frac{15x-18}{-28Rx-24R}
Dividing by -24R-28xR undoes the multiplication by -24R-28xR.
P=-\frac{3\left(5x-6\right)}{4R\left(7x+6\right)}
Divide 15x-18 by -24R-28xR.
6RP\times \frac{2}{3}\left(2-\left(\frac{x}{3}+6\right)-2\left(x-1\right)\right)=5x-6
Multiply both sides of the equation by 6, the least common multiple of 3,6.
4RP\left(2-\left(\frac{x}{3}+6\right)-2\left(x-1\right)\right)=5x-6
Multiply 6 and \frac{2}{3} to get 4.
4RP\left(2-\frac{x}{3}-6-2\left(x-1\right)\right)=5x-6
To find the opposite of \frac{x}{3}+6, find the opposite of each term.
4RP\left(-4-\frac{x}{3}-2\left(x-1\right)\right)=5x-6
Subtract 6 from 2 to get -4.
4RP\left(-4-\frac{x}{3}-2x+2\right)=5x-6
Use the distributive property to multiply -2 by x-1.
4RP\left(-2-\frac{x}{3}-2x\right)=5x-6
Add -4 and 2 to get -2.
-8PR-4PR\times \frac{x}{3}-8PRx=5x-6
Use the distributive property to multiply 4RP by -2-\frac{x}{3}-2x.
-8PR+\frac{-4x}{3}PR-8PRx=5x-6
Express -4\times \frac{x}{3} as a single fraction.
-8PR+\frac{-4xP}{3}R-8PRx=5x-6
Express \frac{-4x}{3}P as a single fraction.
-8PR+\frac{-4xPR}{3}-8PRx=5x-6
Express \frac{-4xP}{3}R as a single fraction.
-24PR-4xPR-24PRx=15x-18
Multiply both sides of the equation by 3.
-24PR-28xPR=15x-18
Combine -4xPR and -24PRx to get -28xPR.
\left(-24P-28xP\right)R=15x-18
Combine all terms containing R.
\left(-28Px-24P\right)R=15x-18
The equation is in standard form.
\frac{\left(-28Px-24P\right)R}{-28Px-24P}=\frac{15x-18}{-28Px-24P}
Divide both sides by -24P-28xP.
R=\frac{15x-18}{-28Px-24P}
Dividing by -24P-28xP undoes the multiplication by -24P-28xP.
R=-\frac{3\left(5x-6\right)}{4P\left(7x+6\right)}
Divide 15x-18 by -24P-28xP.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}