Solve for K (complex solution)
\left\{\begin{matrix}K=\frac{x^{2}}{ag\left(x-20\right)\left(x-10\right)}\text{, }&x\neq 10\text{ and }x\neq 20\text{ and }g\neq 0\text{ and }a\neq 0\\K\in \mathrm{C}\text{, }&\left(g=0\text{ or }a=0\right)\text{ and }x=0\end{matrix}\right.
Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{x^{2}}{Kg\left(x-20\right)\left(x-10\right)}\text{, }&x\neq 10\text{ and }x\neq 20\text{ and }g\neq 0\text{ and }K\neq 0\\a\in \mathrm{C}\text{, }&\left(g=0\text{ or }K=0\right)\text{ and }x=0\end{matrix}\right.
Solve for K
\left\{\begin{matrix}K=\frac{x^{2}}{ag\left(x-20\right)\left(x-10\right)}\text{, }&x\neq 10\text{ and }x\neq 20\text{ and }g\neq 0\text{ and }a\neq 0\\K\in \mathrm{R}\text{, }&\left(g=0\text{ or }a=0\right)\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{x^{2}}{Kg\left(x-20\right)\left(x-10\right)}\text{, }&x\neq 10\text{ and }x\neq 20\text{ and }g\neq 0\text{ and }K\neq 0\\a\in \mathrm{R}\text{, }&\left(g=0\text{ or }K=0\right)\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
Kag\left(x-20\right)\left(x-10\right)=x^{2}
Multiply both sides of the equation by \left(x-20\right)\left(x-10\right).
\left(Kagx-20Kag\right)\left(x-10\right)=x^{2}
Use the distributive property to multiply Kag by x-20.
Kagx^{2}-30Kagx+200Kag=x^{2}
Use the distributive property to multiply Kagx-20Kag by x-10 and combine like terms.
\left(agx^{2}-30agx+200ag\right)K=x^{2}
Combine all terms containing K.
\frac{\left(agx^{2}-30agx+200ag\right)K}{agx^{2}-30agx+200ag}=\frac{x^{2}}{agx^{2}-30agx+200ag}
Divide both sides by ax^{2}g-30agx+200ag.
K=\frac{x^{2}}{agx^{2}-30agx+200ag}
Dividing by ax^{2}g-30agx+200ag undoes the multiplication by ax^{2}g-30agx+200ag.
K=\frac{x^{2}}{ag\left(x-20\right)\left(x-10\right)}
Divide x^{2} by ax^{2}g-30agx+200ag.
Kag\left(x-20\right)\left(x-10\right)=x^{2}
Multiply both sides of the equation by \left(x-20\right)\left(x-10\right).
\left(Kagx-20Kag\right)\left(x-10\right)=x^{2}
Use the distributive property to multiply Kag by x-20.
Kagx^{2}-30Kagx+200Kag=x^{2}
Use the distributive property to multiply Kagx-20Kag by x-10 and combine like terms.
\left(Kgx^{2}-30Kgx+200Kg\right)a=x^{2}
Combine all terms containing a.
\frac{\left(Kgx^{2}-30Kgx+200Kg\right)a}{Kgx^{2}-30Kgx+200Kg}=\frac{x^{2}}{Kgx^{2}-30Kgx+200Kg}
Divide both sides by Kx^{2}g-30Kgx+200Kg.
a=\frac{x^{2}}{Kgx^{2}-30Kgx+200Kg}
Dividing by Kx^{2}g-30Kgx+200Kg undoes the multiplication by Kx^{2}g-30Kgx+200Kg.
a=\frac{x^{2}}{Kg\left(x-20\right)\left(x-10\right)}
Divide x^{2} by Kx^{2}g-30Kgx+200Kg.
Kag\left(x-20\right)\left(x-10\right)=x^{2}
Multiply both sides of the equation by \left(x-20\right)\left(x-10\right).
\left(Kagx-20Kag\right)\left(x-10\right)=x^{2}
Use the distributive property to multiply Kag by x-20.
Kagx^{2}-30Kagx+200Kag=x^{2}
Use the distributive property to multiply Kagx-20Kag by x-10 and combine like terms.
\left(agx^{2}-30agx+200ag\right)K=x^{2}
Combine all terms containing K.
\frac{\left(agx^{2}-30agx+200ag\right)K}{agx^{2}-30agx+200ag}=\frac{x^{2}}{agx^{2}-30agx+200ag}
Divide both sides by ax^{2}g-30agx+200ag.
K=\frac{x^{2}}{agx^{2}-30agx+200ag}
Dividing by ax^{2}g-30agx+200ag undoes the multiplication by ax^{2}g-30agx+200ag.
K=\frac{x^{2}}{ag\left(x-20\right)\left(x-10\right)}
Divide x^{2} by ax^{2}g-30agx+200ag.
Kag\left(x-20\right)\left(x-10\right)=x^{2}
Multiply both sides of the equation by \left(x-20\right)\left(x-10\right).
\left(Kagx-20Kag\right)\left(x-10\right)=x^{2}
Use the distributive property to multiply Kag by x-20.
Kagx^{2}-30Kagx+200Kag=x^{2}
Use the distributive property to multiply Kagx-20Kag by x-10 and combine like terms.
\left(Kgx^{2}-30Kgx+200Kg\right)a=x^{2}
Combine all terms containing a.
\frac{\left(Kgx^{2}-30Kgx+200Kg\right)a}{Kgx^{2}-30Kgx+200Kg}=\frac{x^{2}}{Kgx^{2}-30Kgx+200Kg}
Divide both sides by Kx^{2}g-30Kgx+200Kg.
a=\frac{x^{2}}{Kgx^{2}-30Kgx+200Kg}
Dividing by Kx^{2}g-30Kgx+200Kg undoes the multiplication by Kx^{2}g-30Kgx+200Kg.
a=\frac{x^{2}}{Kg\left(x-20\right)\left(x-10\right)}
Divide x^{2} by Kx^{2}g-30Kgx+200Kg.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}