Skip to main content
Solve for I (complex solution)
Tick mark Image
Solve for I
Tick mark Image
Solve for R (complex solution)
Tick mark Image
Solve for R
Tick mark Image

Similar Problems from Web Search

Share

IRR\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Multiply both sides of the equation by \left(r+1\right)^{2}.
IR^{2}\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Multiply R and R to get R^{2}.
IR^{2}\left(r^{2}+2r+1\right)=22000+\left(r+1\right)^{2}\left(-18000\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+1\right)^{2}.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Use the distributive property to multiply IR^{2} by r^{2}+2r+1.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r^{2}+2r+1\right)\left(-18000\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+1\right)^{2}.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000-18000r^{2}-36000r-18000
Use the distributive property to multiply r^{2}+2r+1 by -18000.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=4000-18000r^{2}-36000r
Subtract 18000 from 22000 to get 4000.
\left(R^{2}r^{2}+2R^{2}r+R^{2}\right)I=4000-18000r^{2}-36000r
Combine all terms containing I.
\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I=4000-36000r-18000r^{2}
The equation is in standard form.
\frac{\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I}{R^{2}r^{2}+2rR^{2}+R^{2}}=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Divide both sides by R^{2}r^{2}+2rR^{2}+R^{2}.
I=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Dividing by R^{2}r^{2}+2rR^{2}+R^{2} undoes the multiplication by R^{2}r^{2}+2rR^{2}+R^{2}.
I=\frac{2000\left(2-18r-9r^{2}\right)}{R^{2}\left(r+1\right)^{2}}
Divide 4000-36000r-18000r^{2} by R^{2}r^{2}+2rR^{2}+R^{2}.
IRR\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Multiply both sides of the equation by \left(r+1\right)^{2}.
IR^{2}\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Multiply R and R to get R^{2}.
IR^{2}\left(r^{2}+2r+1\right)=22000+\left(r+1\right)^{2}\left(-18000\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+1\right)^{2}.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Use the distributive property to multiply IR^{2} by r^{2}+2r+1.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r^{2}+2r+1\right)\left(-18000\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+1\right)^{2}.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000-18000r^{2}-36000r-18000
Use the distributive property to multiply r^{2}+2r+1 by -18000.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=4000-18000r^{2}-36000r
Subtract 18000 from 22000 to get 4000.
\left(R^{2}r^{2}+2R^{2}r+R^{2}\right)I=4000-18000r^{2}-36000r
Combine all terms containing I.
\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I=4000-36000r-18000r^{2}
The equation is in standard form.
\frac{\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I}{R^{2}r^{2}+2rR^{2}+R^{2}}=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Divide both sides by R^{2}r^{2}+2rR^{2}+R^{2}.
I=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Dividing by R^{2}r^{2}+2rR^{2}+R^{2} undoes the multiplication by R^{2}r^{2}+2rR^{2}+R^{2}.
I=\frac{2000\left(2-18r-9r^{2}\right)}{\left(R\left(r+1\right)\right)^{2}}
Divide 4000-18000r^{2}-36000r by R^{2}r^{2}+2rR^{2}+R^{2}.