Evaluate
\omega ^{17}-1+\frac{1}{\omega ^{17}}
Factor
\frac{\left(\omega ^{2}-\omega +1\right)\left(\omega ^{32}+\omega ^{31}-\omega ^{29}-\omega ^{28}+\omega ^{26}+\omega ^{25}-\omega ^{23}-\omega ^{22}+\omega ^{20}+\omega ^{19}-\omega ^{17}-\omega ^{16}-\omega ^{15}+\omega ^{13}+\omega ^{12}-\omega ^{10}-\omega ^{9}+\omega ^{7}+\omega ^{6}-\omega ^{4}-\omega ^{3}+\omega +1\right)}{\omega ^{17}}
Share
Copied to clipboard
\frac{\left(\omega ^{17}-1\right)\omega ^{17}}{\omega ^{17}}+\frac{1}{\omega ^{17}}
To add or subtract expressions, expand them to make their denominators the same. Multiply \omega ^{17}-1 times \frac{\omega ^{17}}{\omega ^{17}}.
\frac{\left(\omega ^{17}-1\right)\omega ^{17}+1}{\omega ^{17}}
Since \frac{\left(\omega ^{17}-1\right)\omega ^{17}}{\omega ^{17}} and \frac{1}{\omega ^{17}} have the same denominator, add them by adding their numerators.
\frac{\omega ^{34}-\omega ^{17}+1}{\omega ^{17}}
Do the multiplications in \left(\omega ^{17}-1\right)\omega ^{17}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}