Solve for μ_y
\mu _{y}=-\frac{2}{3}\approx -0.666666667
Assign μ_y
\mu _{y}≔-\frac{2}{3}
Share
Copied to clipboard
\mu _{y}=\frac{4\left(-2\right)}{9}+\frac{3}{9}\times 0+\frac{2}{9}\times 1
Express \frac{4}{9}\left(-2\right) as a single fraction.
\mu _{y}=\frac{-8}{9}+\frac{3}{9}\times 0+\frac{2}{9}\times 1
Multiply 4 and -2 to get -8.
\mu _{y}=-\frac{8}{9}+\frac{3}{9}\times 0+\frac{2}{9}\times 1
Fraction \frac{-8}{9} can be rewritten as -\frac{8}{9} by extracting the negative sign.
\mu _{y}=-\frac{8}{9}+\frac{1}{3}\times 0+\frac{2}{9}\times 1
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\mu _{y}=-\frac{8}{9}+0+\frac{2}{9}\times 1
Multiply \frac{1}{3} and 0 to get 0.
\mu _{y}=-\frac{8}{9}+\frac{2}{9}\times 1
Add -\frac{8}{9} and 0 to get -\frac{8}{9}.
\mu _{y}=-\frac{8}{9}+\frac{2}{9}
Multiply \frac{2}{9} and 1 to get \frac{2}{9}.
\mu _{y}=\frac{-8+2}{9}
Since -\frac{8}{9} and \frac{2}{9} have the same denominator, add them by adding their numerators.
\mu _{y}=\frac{-6}{9}
Add -8 and 2 to get -6.
\mu _{y}=-\frac{2}{3}
Reduce the fraction \frac{-6}{9} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}