Solve for N (complex solution)
\left\{\begin{matrix}N=\frac{gk\mu s^{2}}{4m}\text{, }&g\neq 0\text{ and }k\neq 0\text{ and }m\neq 0\text{ and }s\neq 0\\N\in \mathrm{C}\text{, }&\mu =0\text{ and }m=0\text{ and }s\neq 0\text{ and }g\neq 0\text{ and }k\neq 0\end{matrix}\right.
Solve for N
\left\{\begin{matrix}N=\frac{gk\mu s^{2}}{4m}\text{, }&g\neq 0\text{ and }k\neq 0\text{ and }m\neq 0\text{ and }s\neq 0\\N\in \mathrm{R}\text{, }&\mu =0\text{ and }m=0\text{ and }s\neq 0\text{ and }g\neq 0\text{ and }k\neq 0\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=\frac{4Nm}{k\mu s^{2}}\text{, }&m\neq 0\text{ and }N\neq 0\text{ and }s\neq 0\text{ and }\mu \neq 0\text{ and }k\neq 0\\g\neq 0\text{, }&\left(m=0\text{ or }N=0\right)\text{ and }\mu =0\text{ and }s\neq 0\text{ and }k\neq 0\end{matrix}\right.
Share
Copied to clipboard
\mu \times 30gks^{2}=s^{2}\times 12N\times \frac{10m}{s^{2}}
Multiply both sides of the equation by 30gks^{2}, the least common multiple of 30kg,s^{2}.
\mu \times 30gks^{2}=\frac{s^{2}\times 10m}{s^{2}}\times 12N
Express s^{2}\times \frac{10m}{s^{2}} as a single fraction.
\mu \times 30gks^{2}=10m\times 12N
Cancel out s^{2} in both numerator and denominator.
\mu \times 30gks^{2}=120mN
Multiply 10 and 12 to get 120.
120mN=\mu \times 30gks^{2}
Swap sides so that all variable terms are on the left hand side.
120mN=30gk\mu s^{2}
The equation is in standard form.
\frac{120mN}{120m}=\frac{30gk\mu s^{2}}{120m}
Divide both sides by 120m.
N=\frac{30gk\mu s^{2}}{120m}
Dividing by 120m undoes the multiplication by 120m.
N=\frac{gk\mu s^{2}}{4m}
Divide 30\mu gks^{2} by 120m.
\mu \times 30gks^{2}=s^{2}\times 12N\times \frac{10m}{s^{2}}
Multiply both sides of the equation by 30gks^{2}, the least common multiple of 30kg,s^{2}.
\mu \times 30gks^{2}=\frac{s^{2}\times 10m}{s^{2}}\times 12N
Express s^{2}\times \frac{10m}{s^{2}} as a single fraction.
\mu \times 30gks^{2}=10m\times 12N
Cancel out s^{2} in both numerator and denominator.
\mu \times 30gks^{2}=120mN
Multiply 10 and 12 to get 120.
120mN=\mu \times 30gks^{2}
Swap sides so that all variable terms are on the left hand side.
120mN=30gk\mu s^{2}
The equation is in standard form.
\frac{120mN}{120m}=\frac{30gk\mu s^{2}}{120m}
Divide both sides by 120m.
N=\frac{30gk\mu s^{2}}{120m}
Dividing by 120m undoes the multiplication by 120m.
N=\frac{gk\mu s^{2}}{4m}
Divide 30\mu gks^{2} by 120m.
\mu \times 30gks^{2}=s^{2}\times 12N\times \frac{10m}{s^{2}}
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30gks^{2}, the least common multiple of 30kg,s^{2}.
\mu \times 30gks^{2}=\frac{s^{2}\times 10m}{s^{2}}\times 12N
Express s^{2}\times \frac{10m}{s^{2}} as a single fraction.
\mu \times 30gks^{2}=10m\times 12N
Cancel out s^{2} in both numerator and denominator.
\mu \times 30gks^{2}=120mN
Multiply 10 and 12 to get 120.
30k\mu s^{2}g=120Nm
The equation is in standard form.
\frac{30k\mu s^{2}g}{30k\mu s^{2}}=\frac{120Nm}{30k\mu s^{2}}
Divide both sides by 30\mu ks^{2}.
g=\frac{120Nm}{30k\mu s^{2}}
Dividing by 30\mu ks^{2} undoes the multiplication by 30\mu ks^{2}.
g=\frac{4Nm}{k\mu s^{2}}
Divide 120mN by 30\mu ks^{2}.
g=\frac{4Nm}{k\mu s^{2}}\text{, }g\neq 0
Variable g cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}