Evaluate
\frac{232}{5}=46.4
Factor
\frac{2 ^ {3} \cdot 29}{5} = 46\frac{2}{5} = 46.4
Share
Copied to clipboard
max(\frac{5}{6}+\frac{10+1}{10})\times 24
Multiply 1 and 10 to get 10.
max(\frac{5}{6}+\frac{11}{10})\times 24
Add 10 and 1 to get 11.
max(\frac{25}{30}+\frac{33}{30})\times 24
Least common multiple of 6 and 10 is 30. Convert \frac{5}{6} and \frac{11}{10} to fractions with denominator 30.
max(\frac{25+33}{30})\times 24
Since \frac{25}{30} and \frac{33}{30} have the same denominator, add them by adding their numerators.
max(\frac{58}{30})\times 24
Add 25 and 33 to get 58.
max(\frac{29}{15})\times 24
Reduce the fraction \frac{58}{30} to lowest terms by extracting and canceling out 2.
\frac{29}{15}
To find the maximum of \frac{29}{15}, first put the numbers in order from least to greatest. This set is already in order.
\frac{29}{15}\times 24
The maximum is \frac{29}{15}, the rightmost value in the set ordered from least to greatest.
\frac{29\times 24}{15}
Express \frac{29}{15}\times 24 as a single fraction.
\frac{696}{15}
Multiply 29 and 24 to get 696.
\frac{232}{5}
Reduce the fraction \frac{696}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}