Microsoft Math Solver
Solve
Practice
Download
Solve
Practice
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Download
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Solve
algebra
trigonometry
statistics
calculus
matrices
variables
list
Evaluate
\log(0.4)\approx -0.397940009
Quiz
Arithmetic
5 problems similar to:
\log ( 0.4 )
Similar Problems from Web Search
How do you calculate \displaystyle{\log{{0.1}}} ?
https://socratic.org/questions/how-do-you-calculate-log-0-1
\displaystyle{{\log}_{{{10}}}{\left({0.1}\right)}}=-{1} - or in other words, we take the 10 and flip flop it to the denominator of a fraction where we have \displaystyle\frac{{1}}{{10}} ...
How do you use a calculator to evaluate the expression \displaystyle{\log{{0.8}}} to four decimal places?
https://socratic.org/questions/how-do-you-use-a-calculator-to-evaluate-the-expression-log0-8-to-four-decimal-pl
Press the keys, enter, then round it to four (see explanation below) You should get -0.0969 Explanation: 1) Find a scientific or graphics calculator & turn it on 2) press the \displaystyle{\log} ...
How do you use the Change of Base Formula and a calculator to evaluate the logarithm \displaystyle{{\log}_{{2}}{12}} ?
https://socratic.org/questions/how-do-you-use-the-change-of-base-formula-and-a-calculator-to-evaluate-the-logar-23
\displaystyle{{\log}_{{2}}{\left({12}\right)}}={3.585} Explanation: You can convert your log into natural log, \displaystyle{\ln} (that can evaluated using a calculator) using the change of ...
How do you use a calculator to evaluate the expression \displaystyle{\log{{0.03}}} to four decimal places?
https://socratic.org/questions/how-do-you-use-a-calculator-to-evaluate-the-expression-log0-03-to-four-decimal-p
\displaystyle{1.5229} Explanation: \displaystyle{\log{{0.03}}}\equiv{{\log}_{{{10}}}{0.03}} \displaystyle\text{using the }\ \text{log}\ \text{ key on the calculator} \displaystyle\text{followed by 0.03 gives the value} ...
Given \displaystyle{\log{{\left({4}\right)}}}={0.6021} , \displaystyle{\log{{\left({9}\right)}}}={0.9542} , and \displaystyle{\log{{\left({12}\right)}}}={1.0792} , how do you find \displaystyle{\log{{\left({0.06}\right)}}} ...
https://socratic.org/questions/given-log4-0-6021-log9-0-9542-and-log12-1-792-how-do-you-find-log-0-06
Douglas K. Oct 11, 2017 Start by observing that: \displaystyle\frac{{12}}{{0.06}}={200} Then ask yourself the question; "How do we divide by 200 using base 10 logarithms?" In base ...
Logarithmus to simple subtraction - how?
https://math.stackexchange.com/questions/677343/logarithmus-to-simple-subtraction-how
For the numerator, notice that .01 = \frac{1}{100} and by logarithmic rules \log .01=\log\frac{1}{100}=\log1-\log100=0-2 The same goes for the denominator: .5=\frac{5}{10} \log .5=\log \frac{5}{10}=\log5-\log10=0.7-1 ...
More Items
Share
Copy
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}
Back to top