\lim g ( x ) = 1 - ( \frac { e ^ { x } - e ^ { - x } } { e ^ { x } + e ^ { - x } } ) ^ { 2 }
Solve for l
l=\frac{4e^{2x}}{xIm(g)\left(e^{2x}+1\right)^{2}}
\nexists n_{3}\in \mathrm{Z}\text{ : }x=i\pi n_{3}+\frac{\pi i}{2}\text{ and }x\neq 0\text{ and }Im(g)\neq 0\text{ and }\nexists n_{2}\in \mathrm{Z}\text{ : }x=2\pi n_{2}i+\frac{\pi i}{2}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=2\pi n_{1}i+\frac{3\pi i}{2}
Share
Copied to clipboard
lIm(g)x=1-\left(\frac{\frac{1}{e^{x}}\left(e^{x}-1\right)\left(e^{x}+1\right)}{\frac{1}{e^{x}}\left(e^{x}-i\right)\left(e^{x}+i\right)}\right)^{2}
Factor the expressions that are not already factored in \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}.
lIm(g)x=1-\left(\frac{\left(e^{x}-1\right)\left(e^{x}+1\right)}{\left(e^{x}-i\right)\left(e^{x}+i\right)}\right)^{2}
Cancel out \frac{1}{e^{x}} in both numerator and denominator.
lIm(g)x=1-\frac{\left(\left(e^{x}-1\right)\left(e^{x}+1\right)\right)^{2}}{\left(\left(e^{x}-i\right)\left(e^{x}+i\right)\right)^{2}}
To raise \frac{\left(e^{x}-1\right)\left(e^{x}+1\right)}{\left(e^{x}-i\right)\left(e^{x}+i\right)} to a power, raise both numerator and denominator to the power and then divide.
lIm(g)x=1-\frac{\left(e^{x}-1\right)^{2}\left(e^{x}+1\right)^{2}}{\left(\left(e^{x}-i\right)\left(e^{x}+i\right)\right)^{2}}
Expand \left(\left(e^{x}-1\right)\left(e^{x}+1\right)\right)^{2}.
lIm(g)x=1-\frac{\left(\left(e^{x}\right)^{2}-2e^{x}+1\right)\left(e^{x}+1\right)^{2}}{\left(\left(e^{x}-i\right)\left(e^{x}+i\right)\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(e^{x}-1\right)^{2}.
lIm(g)x=1-\frac{\left(\left(e^{x}\right)^{2}-2e^{x}+1\right)\left(\left(e^{x}\right)^{2}+2e^{x}+1\right)}{\left(\left(e^{x}-i\right)\left(e^{x}+i\right)\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(e^{x}+1\right)^{2}.
lIm(g)x=1-\frac{\left(\left(e^{x}\right)^{2}-2e^{x}+1\right)\left(\left(e^{x}\right)^{2}+2e^{x}+1\right)}{\left(e^{x}-i\right)^{2}\left(e^{x}+i\right)^{2}}
Expand \left(\left(e^{x}-i\right)\left(e^{x}+i\right)\right)^{2}.
lIm(g)x=1-\frac{\left(\left(e^{x}\right)^{2}-2e^{x}+1\right)\left(\left(e^{x}\right)^{2}+2e^{x}+1\right)}{\left(\left(e^{x}\right)^{2}-2ie^{x}-1\right)\left(e^{x}+i\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(e^{x}-i\right)^{2}.
lIm(g)x=1-\frac{\left(\left(e^{x}\right)^{2}-2e^{x}+1\right)\left(\left(e^{x}\right)^{2}+2e^{x}+1\right)}{\left(\left(e^{x}\right)^{2}-2ie^{x}-1\right)\left(\left(e^{x}\right)^{2}+2ie^{x}-1\right)}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(e^{x}+i\right)^{2}.
lIm(g)x=1-\frac{\left(e^{x}\right)^{4}+2\left(e^{x}\right)^{2}-4e^{2x}+1}{\left(\left(e^{x}\right)^{2}-2ie^{x}-1\right)\left(\left(e^{x}\right)^{2}+2ie^{x}-1\right)}
Use the distributive property to multiply \left(e^{x}\right)^{2}-2e^{x}+1 by \left(e^{x}\right)^{2}+2e^{x}+1 and combine like terms.
lIm(g)x=1-\frac{\left(e^{x}\right)^{4}+2\left(e^{x}\right)^{2}-4e^{2x}+1}{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1}
Use the distributive property to multiply \left(e^{x}\right)^{2}-2ie^{x}-1 by \left(e^{x}\right)^{2}+2ie^{x}-1 and combine like terms.
lIm(g)x=\frac{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1}{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1}-\frac{\left(e^{x}\right)^{4}+2\left(e^{x}\right)^{2}-4e^{2x}+1}{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1}{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1}.
lIm(g)x=\frac{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1-\left(\left(e^{x}\right)^{4}+2\left(e^{x}\right)^{2}-4e^{2x}+1\right)}{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1}
Since \frac{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1}{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1} and \frac{\left(e^{x}\right)^{4}+2\left(e^{x}\right)^{2}-4e^{2x}+1}{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1} have the same denominator, subtract them by subtracting their numerators.
lIm(g)x=\frac{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1-\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}-1}{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1}
To find the opposite of \left(e^{x}\right)^{4}+2\left(e^{x}\right)^{2}-4e^{2x}+1, find the opposite of each term.
lIm(g)x=\frac{-2\left(e^{x}\right)^{2}+4e^{2x}+1-2\left(e^{x}\right)^{2}+4e^{2x}-1}{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1}
Combine \left(e^{x}\right)^{4} and -\left(e^{x}\right)^{4} to get 0.
lIm(g)x=\frac{-4\left(e^{x}\right)^{2}+4e^{2x}+1+4e^{2x}-1}{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1}
Combine -2\left(e^{x}\right)^{2} and -2\left(e^{x}\right)^{2} to get -4\left(e^{x}\right)^{2}.
lIm(g)x=\frac{-4\left(e^{x}\right)^{2}+8e^{2x}+1-1}{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1}
Combine 4e^{2x} and 4e^{2x} to get 8e^{2x}.
lIm(g)x=\frac{-4\left(e^{x}\right)^{2}+8e^{2x}}{\left(e^{x}\right)^{4}-2\left(e^{x}\right)^{2}+4e^{2x}+1}
Subtract 1 from 1 to get 0.
xIm(g)l=\frac{4e^{2x}}{2e^{2x}+e^{4x}+1}
The equation is in standard form.
\frac{xIm(g)l}{xIm(g)}=\frac{4e^{2x}}{\left(e^{2x}+1\right)^{2}xIm(g)}
Divide both sides by xIm(g).
l=\frac{4e^{2x}}{\left(e^{2x}+1\right)^{2}xIm(g)}
Dividing by xIm(g) undoes the multiplication by xIm(g).
l=\frac{4e^{2x}}{xIm(g)\left(e^{2x}+1\right)^{2}}
Divide \frac{4e^{2x}}{\left(e^{2x}+1\right)^{2}} by xIm(g).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}