Microsoft Math Solver
Solve
Practice
Download
Solve
Practice
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Download
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Solve
algebra
trigonometry
statistics
calculus
matrices
variables
list
Evaluate
0
Quiz
Limits
5 problems similar to:
\lim _ { x \rightarrow 1 } \frac { \sqrt { x } - 1 } { x }
Similar Problems from Web Search
Evaluating the limit \lim_{x\to-1}\frac{\sqrt{x}-1}{x-1}
https://math.stackexchange.com/questions/1016555/evaluating-the-limit-lim-x-to-1-frac-sqrtx-1x-1
Huge hint: \begin{equation} (\sqrt{x}-1)(\sqrt{x}+1) = x-1 \end{equation}
How to evaluate the limit \displaystyle\lim_{x\to 1}\dfrac{\sqrt{x}+1}{x-1}
https://www.quora.com/How-do-I-evaluate-the-limit-displaystyle-lim_-x-to-1-dfrac-sqrt-x-+1-x-1
Another way to think of it is to break up the fraction as follows: \begin{align} \frac{\sqrt{x} + 1 }{x-1} = (\sqrt{x}+1) \frac{1}{x-1} \end{align} from which we can see that: As x tends to 1 ...
Prob. 5 (e), Sec. 4.3, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: How to find \lim_{x\to 0-} \frac{\sqrt{x+1}}{x}?
https://math.stackexchange.com/questions/2873999/prob-5-e-sec-4-3-in-bartle-sherberts-intro-to-real-analysis-how-to-fin
\frac{\sqrt{x + 1}}{x} =\frac{x + 1}{x\sqrt{x + 1}} =\frac{1}{\sqrt{x + 1}} + \frac{1}{x\sqrt{x + 1}} \to -\infty \quad \text{as} \quad x \to 0^-
For the limit \lim_{x\to -1}\frac{\sqrt{x+5}-1}{x+2}, find \delta that works for given \epsilon
https://math.stackexchange.com/questions/1532158/for-the-limit-lim-x-to-1-frac-sqrtx5-1x2-find-delta-that-works
I repost it because I encountered a fatal error on the first step \left|\frac{\sqrt{x+5}-2}{x+1}-\frac{1}{4}\right| =\left|\frac{4\sqrt{x+5}-x-9}{4(x+1)}\right| =\left|\frac{16(x+5)-(x+9)^2}{4(x+1)(\sqrt{x+5}+x+9)}\right| ...
How do you find the \displaystyle\lim_{{{x}\to{3}}}\frac{\sqrt{{{x}+{1}}}}{{{x}-{4}}} ?
https://socratic.org/questions/how-do-you-find-the-limit-of-sqrt-x-1-x-4-as-x-3
The limit is the expression evaluated at 3. Explanation: \displaystyle\lim_{{{x}\to{3}}}\frac{\sqrt{{{x}+{1}}}}{{{x}-{4}}}=\frac{\sqrt{{{3}+{1}}}}{{{3}-{4}}} \displaystyle\lim_{{{x}\to{3}}}\frac{\sqrt{{{x}+{1}}}}{{{x}-{4}}}=\frac{\sqrt{{{4}}}}{{-{{1}}}} ...
Find the following limit \lim_{x\to 0}\frac{\sqrt[3]{1+x}-1}{x}
https://math.stackexchange.com/questions/201470/find-the-following-limit-lim-x-to-0-frac-sqrt31x-1x
Revised to avoid l’Hospital’s rule: Your second one can be finished off like this: \begin{align*} \lim_{x\to 0}\frac{-2\sin 2x\sin x}{x^2}&=-2\left(\lim_{x\to 0}\frac{\sin 2x}x\right)\left(\lim_{x\to 0}\frac{\sin x}x\right)\\ &=-4\left(\lim_{x\to 0}\frac{\sin 2x}{2x}\right)\cdot1\\ &=-4\;. \end{align*} ...
More Items
Share
Copy
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}
Back to top