\lim \frac { 1 \sqrt { 1 - x ^ { 2 } } } { 3 x } = \lim \frac { x ( - 1 ) } { 2 }
Solve for l
\left\{\begin{matrix}l=0\text{, }&x\neq 0\\l\in \mathrm{C}\text{, }&\frac{Im(x)}{2}+\frac{Re(\frac{1}{x})Im(\sqrt{1-x^{2}})}{3}+\frac{Im(\frac{1}{x})Re(\sqrt{1-x^{2}})}{3}=0\text{ and }x\neq 0\end{matrix}\right.
Share
Copied to clipboard
lIm(\frac{\sqrt{1-x^{2}}}{3x})=lIm(\frac{x\left(-1\right)}{2})
Cancel out 1 in both numerator and denominator.
lIm(\frac{\sqrt{1-x^{2}}}{3x})-lIm(\frac{x\left(-1\right)}{2})=0
Subtract lIm(\frac{x\left(-1\right)}{2}) from both sides.
-lIm(\frac{-x}{2})+Im(\frac{\sqrt{-x^{2}+1}}{3x})l=0
Reorder the terms.
\left(-Im(\frac{-x}{2})+Im(\frac{\sqrt{-x^{2}+1}}{3x})\right)l=0
Combine all terms containing l.
\left(\frac{Im(x)}{2}+\frac{Re(\frac{1}{x})Im(\sqrt{1-x^{2}})}{3}+\frac{Im(\frac{1}{x})Re(\sqrt{1-x^{2}})}{3}\right)l=0
The equation is in standard form.
l=0
Divide 0 by \frac{1}{2}Im(x)+\frac{1}{3}Re(\sqrt{1-x^{2}})Im(x^{-1})+\frac{1}{3}Im(\sqrt{1-x^{2}})Re(x^{-1}).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}