Evaluate
0
Factor
0
Share
Copied to clipboard
\lfloor -\frac{3}{5}-\frac{5}{5}\rfloor +2
Convert 1 to fraction \frac{5}{5}.
\lfloor \frac{-3-5}{5}\rfloor +2
Since -\frac{3}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
\lfloor -\frac{8}{5}\rfloor +2
Subtract 5 from -3 to get -8.
\lfloor -2+\frac{2}{5}\rfloor +2
Dividing -8 by 5 gives -2 and remainder 2. Rewrite -\frac{8}{5} as -2+\frac{2}{5}.
-2+2
The floor of a real number a is the largest integer number less than or equal to a. The floor of -2+\frac{2}{5} is -2.
0
Add -2 and 2 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}