Evaluate
-1
Factor
-1
Share
Copied to clipboard
\lfloor -\frac{3}{5}+\left(\frac{5}{2}\right)^{-1}\rfloor
Calculate -\frac{5}{3} to the power of -1 and get -\frac{3}{5}.
\lfloor -\frac{3}{5}+\frac{2}{5}\rfloor
Calculate \frac{5}{2} to the power of -1 and get \frac{2}{5}.
\lfloor -\frac{1}{5}\rfloor
Add -\frac{3}{5} and \frac{2}{5} to get -\frac{1}{5}.
\lfloor -1+\frac{4}{5}\rfloor
Dividing -1 by 5 gives -1 and remainder 4. Rewrite -\frac{1}{5} as -1+\frac{4}{5}.
-1
The floor of a real number a is the largest integer number less than or equal to a. The floor of -1+\frac{4}{5} is -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}