Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-y=3
Solve 2x-y=3 for x by isolating x on the left hand side of the equal sign.
2x=y+3
Subtract -y from both sides of the equation.
x=\frac{1}{2}y+\frac{3}{2}
Divide both sides by 2.
y^{2}+\left(\frac{1}{2}y+\frac{3}{2}\right)^{2}=1
Substitute \frac{1}{2}y+\frac{3}{2} for x in the other equation, y^{2}+x^{2}=1.
y^{2}+\frac{1}{4}y^{2}+\frac{3}{2}y+\frac{9}{4}=1
Square \frac{1}{2}y+\frac{3}{2}.
\frac{5}{4}y^{2}+\frac{3}{2}y+\frac{9}{4}=1
Add y^{2} to \frac{1}{4}y^{2}.
\frac{5}{4}y^{2}+\frac{3}{2}y+\frac{5}{4}=0
Subtract 1 from both sides of the equation.
y=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\times \frac{5}{4}\times \frac{5}{4}}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{1}{2}\right)^{2} for a, 1\times \frac{3}{2}\times \frac{1}{2}\times 2 for b, and \frac{5}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\times \frac{5}{4}\times \frac{5}{4}}}{2\times \frac{5}{4}}
Square 1\times \frac{3}{2}\times \frac{1}{2}\times 2.
y=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-5\times \frac{5}{4}}}{2\times \frac{5}{4}}
Multiply -4 times 1+1\times \left(\frac{1}{2}\right)^{2}.
y=\frac{-\frac{3}{2}±\sqrt{\frac{9-25}{4}}}{2\times \frac{5}{4}}
Multiply -5 times \frac{5}{4}.
y=\frac{-\frac{3}{2}±\sqrt{-4}}{2\times \frac{5}{4}}
Add \frac{9}{4} to -\frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{3}{2}±2i}{2\times \frac{5}{4}}
Take the square root of -4.
y=\frac{-\frac{3}{2}±2i}{\frac{5}{2}}
Multiply 2 times 1+1\times \left(\frac{1}{2}\right)^{2}.
y=\frac{-\frac{3}{2}+2i}{\frac{5}{2}}
Now solve the equation y=\frac{-\frac{3}{2}±2i}{\frac{5}{2}} when ± is plus. Add -\frac{3}{2} to 2i.
y=-\frac{3}{5}+\frac{4}{5}i
Divide -\frac{3}{2}+2i by \frac{5}{2} by multiplying -\frac{3}{2}+2i by the reciprocal of \frac{5}{2}.
y=\frac{-\frac{3}{2}-2i}{\frac{5}{2}}
Now solve the equation y=\frac{-\frac{3}{2}±2i}{\frac{5}{2}} when ± is minus. Subtract 2i from -\frac{3}{2}.
y=-\frac{3}{5}-\frac{4}{5}i
Divide -\frac{3}{2}-2i by \frac{5}{2} by multiplying -\frac{3}{2}-2i by the reciprocal of \frac{5}{2}.
x=\frac{1}{2}\left(-\frac{3}{5}+\frac{4}{5}i\right)+\frac{3}{2}
There are two solutions for y: -\frac{3}{5}+\frac{4}{5}i and -\frac{3}{5}-\frac{4}{5}i. Substitute -\frac{3}{5}+\frac{4}{5}i for y in the equation x=\frac{1}{2}y+\frac{3}{2} to find the corresponding solution for x that satisfies both equations.
x=-\frac{3}{10}+\frac{2}{5}i+\frac{3}{2}
Multiply \frac{1}{2} times -\frac{3}{5}+\frac{4}{5}i.
x=\frac{6}{5}+\frac{2}{5}i
Add \left(-\frac{3}{5}+\frac{4}{5}i\right)\times \frac{1}{2} to \frac{3}{2}.
x=\frac{1}{2}\left(-\frac{3}{5}-\frac{4}{5}i\right)+\frac{3}{2}
Now substitute -\frac{3}{5}-\frac{4}{5}i for y in the equation x=\frac{1}{2}y+\frac{3}{2} and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{3}{10}-\frac{2}{5}i+\frac{3}{2}
Multiply \frac{1}{2} times -\frac{3}{5}-\frac{4}{5}i.
x=\frac{6}{5}-\frac{2}{5}i
Add \left(-\frac{3}{5}-\frac{4}{5}i\right)\times \frac{1}{2} to \frac{3}{2}.
x=\frac{6}{5}+\frac{2}{5}i,y=-\frac{3}{5}+\frac{4}{5}i\text{ or }x=\frac{6}{5}-\frac{2}{5}i,y=-\frac{3}{5}-\frac{4}{5}i
The system is now solved.