Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x+2\right)-5y=11,x-7\left(y-1\right)=14
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3\left(x+2\right)-5y=11
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x+6-5y=11
Multiply 3 times x+2.
3x-5y=5
Subtract 6 from both sides of the equation.
3x=5y+5
Add 5y to both sides of the equation.
x=\frac{1}{3}\left(5y+5\right)
Divide both sides by 3.
x=\frac{5}{3}y+\frac{5}{3}
Multiply \frac{1}{3} times 5+5y.
\frac{5}{3}y+\frac{5}{3}-7\left(y-1\right)=14
Substitute \frac{5+5y}{3} for x in the other equation, x-7\left(y-1\right)=14.
\frac{5}{3}y+\frac{5}{3}-7y+7=14
Multiply -7 times y-1.
-\frac{16}{3}y+\frac{5}{3}+7=14
Add \frac{5y}{3} to -7y.
-\frac{16}{3}y+\frac{26}{3}=14
Add \frac{5}{3} to 7.
-\frac{16}{3}y=\frac{16}{3}
Subtract \frac{26}{3} from both sides of the equation.
y=-1
Divide both sides of the equation by -\frac{16}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{5}{3}\left(-1\right)+\frac{5}{3}
Substitute -1 for y in x=\frac{5}{3}y+\frac{5}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-5+5}{3}
Multiply \frac{5}{3} times -1.
x=0
Add \frac{5}{3} to -\frac{5}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=0,y=-1
The system is now solved.
3\left(x+2\right)-5y=11,x-7\left(y-1\right)=14
Put the equations in standard form and then use matrices to solve the system of equations.
3\left(x+2\right)-5y=11
Simplify the first equation to put it in standard form.
3x+6-5y=11
Multiply 3 times x+2.
3x-5y=5
Subtract 6 from both sides of the equation.
x-7\left(y-1\right)=14
Simplify the second equation to put it in standard form.
x-7y+7=14
Multiply -7 times y-1.
x-7y=7
Subtract 7 from both sides of the equation.
\left(\begin{matrix}3&-5\\1&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-5\\1&-7\end{matrix}\right))\left(\begin{matrix}3&-5\\1&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\1&-7\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-5\\1&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\1&-7\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\1&-7\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{3\left(-7\right)-\left(-5\right)}&-\frac{-5}{3\left(-7\right)-\left(-5\right)}\\-\frac{1}{3\left(-7\right)-\left(-5\right)}&\frac{3}{3\left(-7\right)-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{16}&-\frac{5}{16}\\\frac{1}{16}&-\frac{3}{16}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{16}\times 5-\frac{5}{16}\times 7\\\frac{1}{16}\times 5-\frac{3}{16}\times 7\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-1\end{matrix}\right)
Do the arithmetic.
x=0,y=-1
Extract the matrix elements x and y.