Solve for x, y
x=-6\text{, }y=-8
x=6\text{, }y=8
Graph
Share
Copied to clipboard
4x-3y=0,y^{2}+x^{2}=100
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x-3y=0
Solve 4x-3y=0 for x by isolating x on the left hand side of the equal sign.
4x=3y
Subtract -3y from both sides of the equation.
x=\frac{3}{4}y
Divide both sides by 4.
y^{2}+\left(\frac{3}{4}y\right)^{2}=100
Substitute \frac{3}{4}y for x in the other equation, y^{2}+x^{2}=100.
y^{2}+\frac{9}{16}y^{2}=100
Square \frac{3}{4}y.
\frac{25}{16}y^{2}=100
Add y^{2} to \frac{9}{16}y^{2}.
\frac{25}{16}y^{2}-100=0
Subtract 100 from both sides of the equation.
y=\frac{0±\sqrt{0^{2}-4\times \frac{25}{16}\left(-100\right)}}{2\times \frac{25}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{3}{4}\right)^{2} for a, 1\times 0\times \frac{3}{4}\times 2 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times \frac{25}{16}\left(-100\right)}}{2\times \frac{25}{16}}
Square 1\times 0\times \frac{3}{4}\times 2.
y=\frac{0±\sqrt{-\frac{25}{4}\left(-100\right)}}{2\times \frac{25}{16}}
Multiply -4 times 1+1\times \left(\frac{3}{4}\right)^{2}.
y=\frac{0±\sqrt{625}}{2\times \frac{25}{16}}
Multiply -\frac{25}{4} times -100.
y=\frac{0±25}{2\times \frac{25}{16}}
Take the square root of 625.
y=\frac{0±25}{\frac{25}{8}}
Multiply 2 times 1+1\times \left(\frac{3}{4}\right)^{2}.
y=8
Now solve the equation y=\frac{0±25}{\frac{25}{8}} when ± is plus. Divide 25 by \frac{25}{8} by multiplying 25 by the reciprocal of \frac{25}{8}.
y=-8
Now solve the equation y=\frac{0±25}{\frac{25}{8}} when ± is minus. Divide -25 by \frac{25}{8} by multiplying -25 by the reciprocal of \frac{25}{8}.
x=\frac{3}{4}\times 8
There are two solutions for y: 8 and -8. Substitute 8 for y in the equation x=\frac{3}{4}y to find the corresponding solution for x that satisfies both equations.
x=6
Multiply \frac{3}{4} times 8.
x=\frac{3}{4}\left(-8\right)
Now substitute -8 for y in the equation x=\frac{3}{4}y and solve to find the corresponding solution for x that satisfies both equations.
x=-6
Multiply \frac{3}{4} times -8.
x=6,y=8\text{ or }x=-6,y=-8
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}