Solve for x, y, z
x=175
y = \frac{533}{4} = 133\frac{1}{4} = 133.25
z = \frac{175}{4} = 43\frac{3}{4} = 43.75
Share
Copied to clipboard
x+y+z=352 4z=x x-y=z-2
Multiply each equation by the least common multiple of denominators in it. Simplify.
4z=x x+y+z=352 x-y=z-2
Reorder the equations.
x=4z
Solve 4z=x for x.
4z+y+z=352 4z-y=z-2
Substitute 4z for x in the second and third equation.
y=-5z+352 z=-\frac{2}{3}+\frac{1}{3}y
Solve these equations for y and z respectively.
z=-\frac{2}{3}+\frac{1}{3}\left(-5z+352\right)
Substitute -5z+352 for y in the equation z=-\frac{2}{3}+\frac{1}{3}y.
z=\frac{175}{4}
Solve z=-\frac{2}{3}+\frac{1}{3}\left(-5z+352\right) for z.
y=-5\times \frac{175}{4}+352
Substitute \frac{175}{4} for z in the equation y=-5z+352.
y=\frac{533}{4}
Calculate y from y=-5\times \frac{175}{4}+352.
x=4\times \frac{175}{4}
Substitute \frac{175}{4} for z in the equation x=4z.
x=175
Calculate x from x=4\times \frac{175}{4}.
x=175 y=\frac{533}{4} z=\frac{175}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}