Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

375y+30x=15600
Consider the first equation. Multiply both sides of the equation by 5.
100x+300y=3120-520
Consider the second equation. Subtract 520 from both sides.
100x+300y=2600
Subtract 520 from 3120 to get 2600.
375y+30x=15600,300y+100x=2600
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
375y+30x=15600
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
375y=-30x+15600
Subtract 30x from both sides of the equation.
y=\frac{1}{375}\left(-30x+15600\right)
Divide both sides by 375.
y=-\frac{2}{25}x+\frac{208}{5}
Multiply \frac{1}{375} times -30x+15600.
300\left(-\frac{2}{25}x+\frac{208}{5}\right)+100x=2600
Substitute -\frac{2x}{25}+\frac{208}{5} for y in the other equation, 300y+100x=2600.
-24x+12480+100x=2600
Multiply 300 times -\frac{2x}{25}+\frac{208}{5}.
76x+12480=2600
Add -24x to 100x.
76x=-9880
Subtract 12480 from both sides of the equation.
x=-130
Divide both sides by 76.
y=-\frac{2}{25}\left(-130\right)+\frac{208}{5}
Substitute -130 for x in y=-\frac{2}{25}x+\frac{208}{5}. Because the resulting equation contains only one variable, you can solve for y directly.
y=\frac{52+208}{5}
Multiply -\frac{2}{25} times -130.
y=52
Add \frac{208}{5} to \frac{52}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=52,x=-130
The system is now solved.
375y+30x=15600
Consider the first equation. Multiply both sides of the equation by 5.
100x+300y=3120-520
Consider the second equation. Subtract 520 from both sides.
100x+300y=2600
Subtract 520 from 3120 to get 2600.
375y+30x=15600,300y+100x=2600
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}375&30\\300&100\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}15600\\2600\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}375&30\\300&100\end{matrix}\right))\left(\begin{matrix}375&30\\300&100\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}375&30\\300&100\end{matrix}\right))\left(\begin{matrix}15600\\2600\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}375&30\\300&100\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}375&30\\300&100\end{matrix}\right))\left(\begin{matrix}15600\\2600\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}375&30\\300&100\end{matrix}\right))\left(\begin{matrix}15600\\2600\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{100}{375\times 100-30\times 300}&-\frac{30}{375\times 100-30\times 300}\\-\frac{300}{375\times 100-30\times 300}&\frac{375}{375\times 100-30\times 300}\end{matrix}\right)\left(\begin{matrix}15600\\2600\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{285}&-\frac{1}{950}\\-\frac{1}{95}&\frac{1}{76}\end{matrix}\right)\left(\begin{matrix}15600\\2600\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{285}\times 15600-\frac{1}{950}\times 2600\\-\frac{1}{95}\times 15600+\frac{1}{76}\times 2600\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}52\\-130\end{matrix}\right)
Do the arithmetic.
y=52,x=-130
Extract the matrix elements y and x.
375y+30x=15600
Consider the first equation. Multiply both sides of the equation by 5.
100x+300y=3120-520
Consider the second equation. Subtract 520 from both sides.
100x+300y=2600
Subtract 520 from 3120 to get 2600.
375y+30x=15600,300y+100x=2600
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
300\times 375y+300\times 30x=300\times 15600,375\times 300y+375\times 100x=375\times 2600
To make 375y and 300y equal, multiply all terms on each side of the first equation by 300 and all terms on each side of the second by 375.
112500y+9000x=4680000,112500y+37500x=975000
Simplify.
112500y-112500y+9000x-37500x=4680000-975000
Subtract 112500y+37500x=975000 from 112500y+9000x=4680000 by subtracting like terms on each side of the equal sign.
9000x-37500x=4680000-975000
Add 112500y to -112500y. Terms 112500y and -112500y cancel out, leaving an equation with only one variable that can be solved.
-28500x=4680000-975000
Add 9000x to -37500x.
-28500x=3705000
Add 4680000 to -975000.
x=-130
Divide both sides by -28500.
300y+100\left(-130\right)=2600
Substitute -130 for x in 300y+100x=2600. Because the resulting equation contains only one variable, you can solve for y directly.
300y-13000=2600
Multiply 100 times -130.
300y=15600
Add 13000 to both sides of the equation.
y=52
Divide both sides by 300.
y=52,x=-130
The system is now solved.