Solve for x, y
x=-49.48
y=25.16
Graph
Share
Copied to clipboard
375\times 4+30x=15.6
Consider the first equation. Multiply both sides of the equation by 5.
1500+30x=15.6
Multiply 375 and 4 to get 1500.
30x=15.6-1500
Subtract 1500 from both sides.
30x=-1484.4
Subtract 1500 from 15.6 to get -1484.4.
x=\frac{-1484.4}{30}
Divide both sides by 30.
x=\frac{-14844}{300}
Expand \frac{-1484.4}{30} by multiplying both numerator and the denominator by 10.
x=-\frac{1237}{25}
Reduce the fraction \frac{-14844}{300} to lowest terms by extracting and canceling out 12.
100\left(-\frac{1237}{25}\right)+300y+520=3120
Consider the second equation. Insert the known values of variables into the equation.
-4948+300y+520=3120
Multiply 100 and -\frac{1237}{25} to get -4948.
-4428+300y=3120
Add -4948 and 520 to get -4428.
300y=3120+4428
Add 4428 to both sides.
300y=7548
Add 3120 and 4428 to get 7548.
y=\frac{7548}{300}
Divide both sides by 300.
y=\frac{629}{25}
Reduce the fraction \frac{7548}{300} to lowest terms by extracting and canceling out 12.
x=-\frac{1237}{25} y=\frac{629}{25}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}