Solve for x, y
x=1
y = -\frac{14}{5} = -2\frac{4}{5} = -2.8
Graph
Share
Copied to clipboard
\frac{\left(x-1\right)\times 3}{4\left(y+2\right)}=0
Consider the first equation. Divide \frac{x-1}{4} by \frac{y+2}{3} by multiplying \frac{x-1}{4} by the reciprocal of \frac{y+2}{3}.
\frac{3x-3}{4\left(y+2\right)}=0
Use the distributive property to multiply x-1 by 3.
\frac{3x-3}{4y+8}=0
Use the distributive property to multiply 4 by y+2.
3x-3=0
Variable y cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by 4\left(y+2\right).
3x=3
Add 3 to both sides. Anything plus zero gives itself.
x=\frac{3}{3}
Divide both sides by 3.
x=1
Divide 3 by 3 to get 1.
\frac{1+3}{5}-\frac{y-2}{4}=2
Consider the second equation. Insert the known values of variables into the equation.
4\left(1+3\right)-5\left(y-2\right)=40
Multiply both sides of the equation by 20, the least common multiple of 5,4.
4\times 4-5\left(y-2\right)=40
Add 1 and 3 to get 4.
16-5\left(y-2\right)=40
Multiply 4 and 4 to get 16.
16-5y+10=40
Use the distributive property to multiply -5 by y-2.
26-5y=40
Add 16 and 10 to get 26.
-5y=40-26
Subtract 26 from both sides.
-5y=14
Subtract 26 from 40 to get 14.
y=-\frac{14}{5}
Divide both sides by -5.
x=1 y=-\frac{14}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}