Solve for x_1, x_2, x_3
x_{1}=\frac{11}{19}\approx 0.578947368
x_{2}=-\frac{9}{19}\approx -0.473684211
x_{3} = \frac{24}{19} = 1\frac{5}{19} \approx 1.263157895
Share
Copied to clipboard
x_{1}=2x_{2}+2x_{3}-1
Solve x_{1}-2x_{2}-2x_{3}=-1 for x_{1}.
2\left(2x_{2}+2x_{3}-1\right)+3x_{2}+x_{3}=1 5\left(2x_{2}+2x_{3}-1\right)-4x_{2}-3x_{3}=1
Substitute 2x_{2}+2x_{3}-1 for x_{1} in the second and third equation.
x_{2}=-\frac{5}{7}x_{3}+\frac{3}{7} x_{3}=\frac{6}{7}-\frac{6}{7}x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=\frac{6}{7}-\frac{6}{7}\left(-\frac{5}{7}x_{3}+\frac{3}{7}\right)
Substitute -\frac{5}{7}x_{3}+\frac{3}{7} for x_{2} in the equation x_{3}=\frac{6}{7}-\frac{6}{7}x_{2}.
x_{3}=\frac{24}{19}
Solve x_{3}=\frac{6}{7}-\frac{6}{7}\left(-\frac{5}{7}x_{3}+\frac{3}{7}\right) for x_{3}.
x_{2}=-\frac{5}{7}\times \frac{24}{19}+\frac{3}{7}
Substitute \frac{24}{19} for x_{3} in the equation x_{2}=-\frac{5}{7}x_{3}+\frac{3}{7}.
x_{2}=-\frac{9}{19}
Calculate x_{2} from x_{2}=-\frac{5}{7}\times \frac{24}{19}+\frac{3}{7}.
x_{1}=2\left(-\frac{9}{19}\right)+2\times \frac{24}{19}-1
Substitute -\frac{9}{19} for x_{2} and \frac{24}{19} for x_{3} in the equation x_{1}=2x_{2}+2x_{3}-1.
x_{1}=\frac{11}{19}
Calculate x_{1} from x_{1}=2\left(-\frac{9}{19}\right)+2\times \frac{24}{19}-1.
x_{1}=\frac{11}{19} x_{2}=-\frac{9}{19} x_{3}=\frac{24}{19}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}