Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x=y-3z+8
Solve x-y+3z=8 for x.
2\left(y-3z+8\right)-3y+z=-1 3\left(y-3z+8\right)+2y+\lambda -3=-2
Substitute y-3z+8 for x in the second and third equation.
y=-5z+17 z=\frac{23}{9}+\frac{5}{9}y+\frac{1}{9}\lambda
Solve these equations for y and z respectively.
z=\frac{23}{9}+\frac{5}{9}\left(-5z+17\right)+\frac{1}{9}\lambda
Substitute -5z+17 for y in the equation z=\frac{23}{9}+\frac{5}{9}y+\frac{1}{9}\lambda .
z=\frac{54}{17}+\frac{1}{34}\lambda
Solve z=\frac{23}{9}+\frac{5}{9}\left(-5z+17\right)+\frac{1}{9}\lambda for z.
y=-5\left(\frac{54}{17}+\frac{1}{34}\lambda \right)+17
Substitute \frac{54}{17}+\frac{1}{34}\lambda for z in the equation y=-5z+17.
y=\frac{19}{17}-\frac{5}{34}\lambda
Calculate y from y=-5\left(\frac{54}{17}+\frac{1}{34}\lambda \right)+17.
x=\frac{19}{17}-\frac{5}{34}\lambda -3\left(\frac{54}{17}+\frac{1}{34}\lambda \right)+8
Substitute \frac{19}{17}-\frac{5}{34}\lambda for y and \frac{54}{17}+\frac{1}{34}\lambda for z in the equation x=y-3z+8.
x=-\frac{7}{17}-\frac{4}{17}\lambda
Calculate x from x=\frac{19}{17}-\frac{5}{34}\lambda -3\left(\frac{54}{17}+\frac{1}{34}\lambda \right)+8.
x=-\frac{7}{17}-\frac{4}{17}\lambda y=\frac{19}{17}-\frac{5}{34}\lambda z=\frac{54}{17}+\frac{1}{34}\lambda
The system is now solved.