Solve for x, y
x=37
y=24
Graph
Share
Copied to clipboard
x+y=61,4x+2y=196
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=61
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+61
Subtract y from both sides of the equation.
4\left(-y+61\right)+2y=196
Substitute -y+61 for x in the other equation, 4x+2y=196.
-4y+244+2y=196
Multiply 4 times -y+61.
-2y+244=196
Add -4y to 2y.
-2y=-48
Subtract 244 from both sides of the equation.
y=24
Divide both sides by -2.
x=-24+61
Substitute 24 for y in x=-y+61. Because the resulting equation contains only one variable, you can solve for x directly.
x=37
Add 61 to -24.
x=37,y=24
The system is now solved.
x+y=61,4x+2y=196
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}61\\196\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}61\\196\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\4&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}61\\196\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}61\\196\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-4}&-\frac{1}{2-4}\\-\frac{4}{2-4}&\frac{1}{2-4}\end{matrix}\right)\left(\begin{matrix}61\\196\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}61\\196\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-61+\frac{1}{2}\times 196\\2\times 61-\frac{1}{2}\times 196\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}37\\24\end{matrix}\right)
Do the arithmetic.
x=37,y=24
Extract the matrix elements x and y.
x+y=61,4x+2y=196
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x+4y=4\times 61,4x+2y=196
To make x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 1.
4x+4y=244,4x+2y=196
Simplify.
4x-4x+4y-2y=244-196
Subtract 4x+2y=196 from 4x+4y=244 by subtracting like terms on each side of the equal sign.
4y-2y=244-196
Add 4x to -4x. Terms 4x and -4x cancel out, leaving an equation with only one variable that can be solved.
2y=244-196
Add 4y to -2y.
2y=48
Add 244 to -196.
y=24
Divide both sides by 2.
4x+2\times 24=196
Substitute 24 for y in 4x+2y=196. Because the resulting equation contains only one variable, you can solve for x directly.
4x+48=196
Multiply 2 times 24.
4x=148
Subtract 48 from both sides of the equation.
x=37
Divide both sides by 4.
x=37,y=24
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}