Solve for x, y
x = \frac{1249}{5} = 249\frac{4}{5} = 249.8
y = -\frac{249}{5} = -49\frac{4}{5} = -49.8
Graph
Share
Copied to clipboard
x+y=200,10x+50y=8
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=200
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+200
Subtract y from both sides of the equation.
10\left(-y+200\right)+50y=8
Substitute -y+200 for x in the other equation, 10x+50y=8.
-10y+2000+50y=8
Multiply 10 times -y+200.
40y+2000=8
Add -10y to 50y.
40y=-1992
Subtract 2000 from both sides of the equation.
y=-\frac{249}{5}
Divide both sides by 40.
x=-\left(-\frac{249}{5}\right)+200
Substitute -\frac{249}{5} for y in x=-y+200. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{249}{5}+200
Multiply -1 times -\frac{249}{5}.
x=\frac{1249}{5}
Add 200 to \frac{249}{5}.
x=\frac{1249}{5},y=-\frac{249}{5}
The system is now solved.
x+y=200,10x+50y=8
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\10&50\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\8\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\10&50\end{matrix}\right))\left(\begin{matrix}1&1\\10&50\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&50\end{matrix}\right))\left(\begin{matrix}200\\8\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\10&50\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&50\end{matrix}\right))\left(\begin{matrix}200\\8\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&50\end{matrix}\right))\left(\begin{matrix}200\\8\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{50}{50-10}&-\frac{1}{50-10}\\-\frac{10}{50-10}&\frac{1}{50-10}\end{matrix}\right)\left(\begin{matrix}200\\8\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}&-\frac{1}{40}\\-\frac{1}{4}&\frac{1}{40}\end{matrix}\right)\left(\begin{matrix}200\\8\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}\times 200-\frac{1}{40}\times 8\\-\frac{1}{4}\times 200+\frac{1}{40}\times 8\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1249}{5}\\-\frac{249}{5}\end{matrix}\right)
Do the arithmetic.
x=\frac{1249}{5},y=-\frac{249}{5}
Extract the matrix elements x and y.
x+y=200,10x+50y=8
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10x+10y=10\times 200,10x+50y=8
To make x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 1.
10x+10y=2000,10x+50y=8
Simplify.
10x-10x+10y-50y=2000-8
Subtract 10x+50y=8 from 10x+10y=2000 by subtracting like terms on each side of the equal sign.
10y-50y=2000-8
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
-40y=2000-8
Add 10y to -50y.
-40y=1992
Add 2000 to -8.
y=-\frac{249}{5}
Divide both sides by -40.
10x+50\left(-\frac{249}{5}\right)=8
Substitute -\frac{249}{5} for y in 10x+50y=8. Because the resulting equation contains only one variable, you can solve for x directly.
10x-2490=8
Multiply 50 times -\frac{249}{5}.
10x=2498
Add 2490 to both sides of the equation.
x=\frac{1249}{5}
Divide both sides by 10.
x=\frac{1249}{5},y=-\frac{249}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}