Solve for y, x
x = \frac{7465}{26} = 287\frac{3}{26} \approx 287.115384615
y = \frac{27930}{13} = 2148\frac{6}{13} \approx 2148.461538462
Graph
Share
Copied to clipboard
y+\frac{40}{3}x=\frac{17930}{3},0.5y-2x=500
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+\frac{40}{3}x=\frac{17930}{3}
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
y=-\frac{40}{3}x+\frac{17930}{3}
Subtract \frac{40x}{3} from both sides of the equation.
0.5\left(-\frac{40}{3}x+\frac{17930}{3}\right)-2x=500
Substitute \frac{-40x+17930}{3} for y in the other equation, 0.5y-2x=500.
-\frac{20}{3}x+\frac{8965}{3}-2x=500
Multiply 0.5 times \frac{-40x+17930}{3}.
-\frac{26}{3}x+\frac{8965}{3}=500
Add -\frac{20x}{3} to -2x.
-\frac{26}{3}x=-\frac{7465}{3}
Subtract \frac{8965}{3} from both sides of the equation.
x=\frac{7465}{26}
Divide both sides of the equation by -\frac{26}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=-\frac{40}{3}\times \frac{7465}{26}+\frac{17930}{3}
Substitute \frac{7465}{26} for x in y=-\frac{40}{3}x+\frac{17930}{3}. Because the resulting equation contains only one variable, you can solve for y directly.
y=-\frac{149300}{39}+\frac{17930}{3}
Multiply -\frac{40}{3} times \frac{7465}{26} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{27930}{13}
Add \frac{17930}{3} to -\frac{149300}{39} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{27930}{13},x=\frac{7465}{26}
The system is now solved.
y+\frac{40}{3}x=\frac{17930}{3},0.5y-2x=500
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&\frac{40}{3}\\0.5&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{17930}{3}\\500\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&\frac{40}{3}\\0.5&-2\end{matrix}\right))\left(\begin{matrix}1&\frac{40}{3}\\0.5&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{40}{3}\\0.5&-2\end{matrix}\right))\left(\begin{matrix}\frac{17930}{3}\\500\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&\frac{40}{3}\\0.5&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{40}{3}\\0.5&-2\end{matrix}\right))\left(\begin{matrix}\frac{17930}{3}\\500\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{40}{3}\\0.5&-2\end{matrix}\right))\left(\begin{matrix}\frac{17930}{3}\\500\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\frac{40}{3}\times 0.5}&-\frac{\frac{40}{3}}{-2-\frac{40}{3}\times 0.5}\\-\frac{0.5}{-2-\frac{40}{3}\times 0.5}&\frac{1}{-2-\frac{40}{3}\times 0.5}\end{matrix}\right)\left(\begin{matrix}\frac{17930}{3}\\500\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}&\frac{20}{13}\\\frac{3}{52}&-\frac{3}{26}\end{matrix}\right)\left(\begin{matrix}\frac{17930}{3}\\500\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}\times \frac{17930}{3}+\frac{20}{13}\times 500\\\frac{3}{52}\times \frac{17930}{3}-\frac{3}{26}\times 500\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{27930}{13}\\\frac{7465}{26}\end{matrix}\right)
Do the arithmetic.
y=\frac{27930}{13},x=\frac{7465}{26}
Extract the matrix elements y and x.
y+\frac{40}{3}x=\frac{17930}{3},0.5y-2x=500
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.5y+0.5\times \frac{40}{3}x=0.5\times \frac{17930}{3},0.5y-2x=500
To make y and \frac{y}{2} equal, multiply all terms on each side of the first equation by 0.5 and all terms on each side of the second by 1.
0.5y+\frac{20}{3}x=\frac{8965}{3},0.5y-2x=500
Simplify.
0.5y-0.5y+\frac{20}{3}x+2x=\frac{8965}{3}-500
Subtract 0.5y-2x=500 from 0.5y+\frac{20}{3}x=\frac{8965}{3} by subtracting like terms on each side of the equal sign.
\frac{20}{3}x+2x=\frac{8965}{3}-500
Add \frac{y}{2} to -\frac{y}{2}. Terms \frac{y}{2} and -\frac{y}{2} cancel out, leaving an equation with only one variable that can be solved.
\frac{26}{3}x=\frac{8965}{3}-500
Add \frac{20x}{3} to 2x.
\frac{26}{3}x=\frac{7465}{3}
Add \frac{8965}{3} to -500.
x=\frac{7465}{26}
Divide both sides of the equation by \frac{26}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
0.5y-2\times \frac{7465}{26}=500
Substitute \frac{7465}{26} for x in 0.5y-2x=500. Because the resulting equation contains only one variable, you can solve for y directly.
0.5y-\frac{7465}{13}=500
Multiply -2 times \frac{7465}{26}.
0.5y=\frac{13965}{13}
Add \frac{7465}{13} to both sides of the equation.
y=\frac{27930}{13}
Multiply both sides by 2.
y=\frac{27930}{13},x=\frac{7465}{26}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}