Skip to main content
Solve for x_2, x_3, x_1
Tick mark Image

Similar Problems from Web Search

Share

x_{2}=-3x_{3}+8
Solve x_{2}+3x_{3}=8 for x_{2}.
4x_{1}+6\left(-3x_{3}+8\right)+7x_{3}=-3 2x_{1}-3x_{3}+8+6x_{3}=5
Substitute -3x_{3}+8 for x_{2} in the second and third equation.
x_{3}=\frac{4}{11}x_{1}+\frac{51}{11} x_{1}=-\frac{3}{2}-\frac{3}{2}x_{3}
Solve these equations for x_{3} and x_{1} respectively.
x_{1}=-\frac{3}{2}-\frac{3}{2}\left(\frac{4}{11}x_{1}+\frac{51}{11}\right)
Substitute \frac{4}{11}x_{1}+\frac{51}{11} for x_{3} in the equation x_{1}=-\frac{3}{2}-\frac{3}{2}x_{3}.
x_{1}=-\frac{93}{17}
Solve x_{1}=-\frac{3}{2}-\frac{3}{2}\left(\frac{4}{11}x_{1}+\frac{51}{11}\right) for x_{1}.
x_{3}=\frac{4}{11}\left(-\frac{93}{17}\right)+\frac{51}{11}
Substitute -\frac{93}{17} for x_{1} in the equation x_{3}=\frac{4}{11}x_{1}+\frac{51}{11}.
x_{3}=\frac{45}{17}
Calculate x_{3} from x_{3}=\frac{4}{11}\left(-\frac{93}{17}\right)+\frac{51}{11}.
x_{2}=-3\times \frac{45}{17}+8
Substitute \frac{45}{17} for x_{3} in the equation x_{2}=-3x_{3}+8.
x_{2}=\frac{1}{17}
Calculate x_{2} from x_{2}=-3\times \frac{45}{17}+8.
x_{2}=\frac{1}{17} x_{3}=\frac{45}{17} x_{1}=-\frac{93}{17}
The system is now solved.