Solve for x_1, x_2, x_3
x_{1}=3
x_{2}=1
x_{3}=-2
Share
Copied to clipboard
x_{1}=x_{2}-2x_{3}-2
Solve x_{1}-x_{2}+2x_{3}=-2 for x_{1}.
-3\left(x_{2}-2x_{3}-2\right)+6x_{2}-8x_{3}=13 5\left(x_{2}-2x_{3}-2\right)+4x_{2}+6x_{3}=7
Substitute x_{2}-2x_{3}-2 for x_{1} in the second and third equation.
x_{2}=\frac{2}{3}x_{3}+\frac{7}{3} x_{3}=\frac{9}{4}x_{2}-\frac{17}{4}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=\frac{9}{4}\left(\frac{2}{3}x_{3}+\frac{7}{3}\right)-\frac{17}{4}
Substitute \frac{2}{3}x_{3}+\frac{7}{3} for x_{2} in the equation x_{3}=\frac{9}{4}x_{2}-\frac{17}{4}.
x_{3}=-2
Solve x_{3}=\frac{9}{4}\left(\frac{2}{3}x_{3}+\frac{7}{3}\right)-\frac{17}{4} for x_{3}.
x_{2}=\frac{2}{3}\left(-2\right)+\frac{7}{3}
Substitute -2 for x_{3} in the equation x_{2}=\frac{2}{3}x_{3}+\frac{7}{3}.
x_{2}=1
Calculate x_{2} from x_{2}=\frac{2}{3}\left(-2\right)+\frac{7}{3}.
x_{1}=1-2\left(-2\right)-2
Substitute 1 for x_{2} and -2 for x_{3} in the equation x_{1}=x_{2}-2x_{3}-2.
x_{1}=3
Calculate x_{1} from x_{1}=1-2\left(-2\right)-2.
x_{1}=3 x_{2}=1 x_{3}=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}