Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{1}=x_{2}-2x_{3}-2
Solve x_{1}-x_{2}+2x_{3}=-2 for x_{1}.
-3\left(x_{2}-2x_{3}-2\right)+6x_{2}-8x_{3}=13 5\left(x_{2}-2x_{3}-2\right)+4x_{2}+6x_{3}=7
Substitute x_{2}-2x_{3}-2 for x_{1} in the second and third equation.
x_{2}=\frac{2}{3}x_{3}+\frac{7}{3} x_{3}=\frac{9}{4}x_{2}-\frac{17}{4}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=\frac{9}{4}\left(\frac{2}{3}x_{3}+\frac{7}{3}\right)-\frac{17}{4}
Substitute \frac{2}{3}x_{3}+\frac{7}{3} for x_{2} in the equation x_{3}=\frac{9}{4}x_{2}-\frac{17}{4}.
x_{3}=-2
Solve x_{3}=\frac{9}{4}\left(\frac{2}{3}x_{3}+\frac{7}{3}\right)-\frac{17}{4} for x_{3}.
x_{2}=\frac{2}{3}\left(-2\right)+\frac{7}{3}
Substitute -2 for x_{3} in the equation x_{2}=\frac{2}{3}x_{3}+\frac{7}{3}.
x_{2}=1
Calculate x_{2} from x_{2}=\frac{2}{3}\left(-2\right)+\frac{7}{3}.
x_{1}=1-2\left(-2\right)-2
Substitute 1 for x_{2} and -2 for x_{3} in the equation x_{1}=x_{2}-2x_{3}-2.
x_{1}=3
Calculate x_{1} from x_{1}=1-2\left(-2\right)-2.
x_{1}=3 x_{2}=1 x_{3}=-2
The system is now solved.