Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{1}=-x_{2}+x_{3}
Solve x_{1}+x_{2}-x_{3}=0 for x_{1}.
2\left(-x_{2}+x_{3}\right)-x_{3}=2 4\left(-x_{2}+x_{3}\right)+x_{2}+x_{3}=6
Substitute -x_{2}+x_{3} for x_{1} in the second and third equation.
x_{2}=-1+\frac{1}{2}x_{3} x_{3}=\frac{6}{5}+\frac{3}{5}x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=\frac{6}{5}+\frac{3}{5}\left(-1+\frac{1}{2}x_{3}\right)
Substitute -1+\frac{1}{2}x_{3} for x_{2} in the equation x_{3}=\frac{6}{5}+\frac{3}{5}x_{2}.
x_{3}=\frac{6}{7}
Solve x_{3}=\frac{6}{5}+\frac{3}{5}\left(-1+\frac{1}{2}x_{3}\right) for x_{3}.
x_{2}=-1+\frac{1}{2}\times \frac{6}{7}
Substitute \frac{6}{7} for x_{3} in the equation x_{2}=-1+\frac{1}{2}x_{3}.
x_{2}=-\frac{4}{7}
Calculate x_{2} from x_{2}=-1+\frac{1}{2}\times \frac{6}{7}.
x_{1}=-\left(-\frac{4}{7}\right)+\frac{6}{7}
Substitute -\frac{4}{7} for x_{2} and \frac{6}{7} for x_{3} in the equation x_{1}=-x_{2}+x_{3}.
x_{1}=\frac{10}{7}
Calculate x_{1} from x_{1}=-\left(-\frac{4}{7}\right)+\frac{6}{7}.
x_{1}=\frac{10}{7} x_{2}=-\frac{4}{7} x_{3}=\frac{6}{7}
The system is now solved.