Solve for x, y
x=-4\text{, }y=7
x=-7\text{, }y=4
Graph
Share
Copied to clipboard
x-y=-11,y^{2}+x^{2}=65
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=-11
Solve x-y=-11 for x by isolating x on the left hand side of the equal sign.
x=y-11
Subtract -y from both sides of the equation.
y^{2}+\left(y-11\right)^{2}=65
Substitute y-11 for x in the other equation, y^{2}+x^{2}=65.
y^{2}+y^{2}-22y+121=65
Square y-11.
2y^{2}-22y+121=65
Add y^{2} to y^{2}.
2y^{2}-22y+56=0
Subtract 65 from both sides of the equation.
y=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 2\times 56}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\left(-11\right)\times 1\times 2 for b, and 56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-22\right)±\sqrt{484-4\times 2\times 56}}{2\times 2}
Square 1\left(-11\right)\times 1\times 2.
y=\frac{-\left(-22\right)±\sqrt{484-8\times 56}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
y=\frac{-\left(-22\right)±\sqrt{484-448}}{2\times 2}
Multiply -8 times 56.
y=\frac{-\left(-22\right)±\sqrt{36}}{2\times 2}
Add 484 to -448.
y=\frac{-\left(-22\right)±6}{2\times 2}
Take the square root of 36.
y=\frac{22±6}{2\times 2}
The opposite of 1\left(-11\right)\times 1\times 2 is 22.
y=\frac{22±6}{4}
Multiply 2 times 1+1\times 1^{2}.
y=\frac{28}{4}
Now solve the equation y=\frac{22±6}{4} when ± is plus. Add 22 to 6.
y=7
Divide 28 by 4.
y=\frac{16}{4}
Now solve the equation y=\frac{22±6}{4} when ± is minus. Subtract 6 from 22.
y=4
Divide 16 by 4.
x=7-11
There are two solutions for y: 7 and 4. Substitute 7 for y in the equation x=y-11 to find the corresponding solution for x that satisfies both equations.
x=-4
Add 1\times 7 to -11.
x=4-11
Now substitute 4 for y in the equation x=y-11 and solve to find the corresponding solution for x that satisfies both equations.
x=-7
Add 1\times 4 to -11.
x=-4,y=7\text{ or }x=-7,y=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}