Solve for x, y
x=\frac{-3\sqrt{89}-1}{10}\approx -2.93019434\text{, }y=\frac{3-\sqrt{89}}{10}\approx -0.643398113
x=\frac{3\sqrt{89}-1}{10}\approx 2.73019434\text{, }y=\frac{\sqrt{89}+3}{10}\approx 1.243398113
Graph
Share
Copied to clipboard
x-3y=-1,y^{2}+x^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-3y=-1
Solve x-3y=-1 for x by isolating x on the left hand side of the equal sign.
x=3y-1
Subtract -3y from both sides of the equation.
y^{2}+\left(3y-1\right)^{2}=9
Substitute 3y-1 for x in the other equation, y^{2}+x^{2}=9.
y^{2}+9y^{2}-6y+1=9
Square 3y-1.
10y^{2}-6y+1=9
Add y^{2} to 9y^{2}.
10y^{2}-6y-8=0
Subtract 9 from both sides of the equation.
y=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 10\left(-8\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 3^{2} for a, 1\left(-1\right)\times 2\times 3 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-6\right)±\sqrt{36-4\times 10\left(-8\right)}}{2\times 10}
Square 1\left(-1\right)\times 2\times 3.
y=\frac{-\left(-6\right)±\sqrt{36-40\left(-8\right)}}{2\times 10}
Multiply -4 times 1+1\times 3^{2}.
y=\frac{-\left(-6\right)±\sqrt{36+320}}{2\times 10}
Multiply -40 times -8.
y=\frac{-\left(-6\right)±\sqrt{356}}{2\times 10}
Add 36 to 320.
y=\frac{-\left(-6\right)±2\sqrt{89}}{2\times 10}
Take the square root of 356.
y=\frac{6±2\sqrt{89}}{2\times 10}
The opposite of 1\left(-1\right)\times 2\times 3 is 6.
y=\frac{6±2\sqrt{89}}{20}
Multiply 2 times 1+1\times 3^{2}.
y=\frac{2\sqrt{89}+6}{20}
Now solve the equation y=\frac{6±2\sqrt{89}}{20} when ± is plus. Add 6 to 2\sqrt{89}.
y=\frac{\sqrt{89}+3}{10}
Divide 6+2\sqrt{89} by 20.
y=\frac{6-2\sqrt{89}}{20}
Now solve the equation y=\frac{6±2\sqrt{89}}{20} when ± is minus. Subtract 2\sqrt{89} from 6.
y=\frac{3-\sqrt{89}}{10}
Divide 6-2\sqrt{89} by 20.
x=3\times \frac{\sqrt{89}+3}{10}-1
There are two solutions for y: \frac{3+\sqrt{89}}{10} and \frac{3-\sqrt{89}}{10}. Substitute \frac{3+\sqrt{89}}{10} for y in the equation x=3y-1 to find the corresponding solution for x that satisfies both equations.
x=3\times \frac{3-\sqrt{89}}{10}-1
Now substitute \frac{3-\sqrt{89}}{10} for y in the equation x=3y-1 and solve to find the corresponding solution for x that satisfies both equations.
x=3\times \frac{\sqrt{89}+3}{10}-1,y=\frac{\sqrt{89}+3}{10}\text{ or }x=3\times \frac{3-\sqrt{89}}{10}-1,y=\frac{3-\sqrt{89}}{10}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}