Solve for x, y, z
x=\frac{33-12u}{5}
y = \frac{1}{2} = 0.5
z=\frac{3u}{5}-\frac{29}{10}
Share
Copied to clipboard
x=-y+z-2u+10
Solve x+y-z+2u=10 for x.
3\left(-y+z-2u+10\right)-y+7z+4y=1 -5\left(-y+z-2u+10\right)+3y-15z-6y=9
Substitute -y+z-2u+10 for x in the second and third equation.
z=-\frac{29}{10}+\frac{3}{5}u y=10z-5u+\frac{59}{2}
Solve these equations for z and y respectively.
y=10\left(-\frac{29}{10}+\frac{3}{5}u\right)-5u+\frac{59}{2}
Substitute -\frac{29}{10}+\frac{3}{5}u for z in the equation y=10z-5u+\frac{59}{2}.
y=\frac{1}{2}+u
Calculate y from y=10\left(-\frac{29}{10}+\frac{3}{5}u\right)-5u+\frac{59}{2}.
x=-\left(\frac{1}{2}+u\right)-\frac{29}{10}+\frac{3}{5}u-2u+10
Substitute -\frac{29}{10}+\frac{3}{5}u for z and \frac{1}{2}+u for y in the equation x=-y+z-2u+10.
x=\frac{33}{5}-\frac{12}{5}u
Calculate x from x=-\left(\frac{1}{2}+u\right)-\frac{29}{10}+\frac{3}{5}u-2u+10.
x=\frac{33}{5}-\frac{12}{5}u y=\frac{1}{2}+u z=-\frac{29}{10}+\frac{3}{5}u
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}