Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=300,24\left(x+20\right)+50y=12880
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=300
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+300
Subtract y from both sides of the equation.
24\left(-y+300+20\right)+50y=12880
Substitute -y+300 for x in the other equation, 24\left(x+20\right)+50y=12880.
24\left(-y+320\right)+50y=12880
Add 300 to 20.
-24y+7680+50y=12880
Multiply 24 times -y+320.
26y+7680=12880
Add -24y to 50y.
26y=5200
Subtract 7680 from both sides of the equation.
y=200
Divide both sides by 26.
x=-200+300
Substitute 200 for y in x=-y+300. Because the resulting equation contains only one variable, you can solve for x directly.
x=100
Add 300 to -200.
x=100,y=200
The system is now solved.
x+y=300,24\left(x+20\right)+50y=12880
Put the equations in standard form and then use matrices to solve the system of equations.
24\left(x+20\right)+50y=12880
Simplify the second equation to put it in standard form.
24x+480+50y=12880
Multiply 24 times x+20.
24x+50y=12400
Subtract 480 from both sides of the equation.
\left(\begin{matrix}1&1\\24&50\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300\\12400\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\24&50\end{matrix}\right))\left(\begin{matrix}1&1\\24&50\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\24&50\end{matrix}\right))\left(\begin{matrix}300\\12400\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\24&50\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\24&50\end{matrix}\right))\left(\begin{matrix}300\\12400\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\24&50\end{matrix}\right))\left(\begin{matrix}300\\12400\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{50}{50-24}&-\frac{1}{50-24}\\-\frac{24}{50-24}&\frac{1}{50-24}\end{matrix}\right)\left(\begin{matrix}300\\12400\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{13}&-\frac{1}{26}\\-\frac{12}{13}&\frac{1}{26}\end{matrix}\right)\left(\begin{matrix}300\\12400\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{13}\times 300-\frac{1}{26}\times 12400\\-\frac{12}{13}\times 300+\frac{1}{26}\times 12400\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\200\end{matrix}\right)
Do the arithmetic.
x=100,y=200
Extract the matrix elements x and y.