Solve for f, x
x=6.7321
f = \frac{476391332957161}{6732100000000} = 70\frac{5144332957161}{6732100000000} \approx 70.764149813
Graph
Share
Copied to clipboard
f\times 6.7321=6.7321^{3}+4\times 6.7321^{2}-10
Consider the first equation. Insert the known values of variables into the equation.
f\times 6.7321=305.106651317161+4\times 6.7321^{2}-10
Calculate 6.7321 to the power of 3 and get 305.106651317161.
f\times 6.7321=305.106651317161+4\times 45.32117041-10
Calculate 6.7321 to the power of 2 and get 45.32117041.
f\times 6.7321=305.106651317161+181.28468164-10
Multiply 4 and 45.32117041 to get 181.28468164.
f\times 6.7321=486.391332957161-10
Add 305.106651317161 and 181.28468164 to get 486.391332957161.
f\times 6.7321=476.391332957161
Subtract 10 from 486.391332957161 to get 476.391332957161.
f=\frac{476.391332957161}{6.7321}
Divide both sides by 6.7321.
f=\frac{476391332957161}{6732100000000}
Expand \frac{476.391332957161}{6.7321} by multiplying both numerator and the denominator by 1000000000000.
f=\frac{476391332957161}{6732100000000} x=6.7321
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}