Solve for c_1, c_2, c_3
c_{1}=0
c_{2}=0
c_{3}=0
Share
Copied to clipboard
c_{1}=-5c_{2}-3c_{3}
Solve c_{1}+5c_{2}+3c_{3}=0 for c_{1}.
-2\left(-5c_{2}-3c_{3}\right)+6c_{2}+2c_{3}=0 3\left(-5c_{2}-3c_{3}\right)-c_{2}+c_{2}=0
Substitute -5c_{2}-3c_{3} for c_{1} in the second and third equation.
c_{2}=-\frac{1}{2}c_{3} c_{3}=-\frac{5}{3}c_{2}
Solve these equations for c_{2} and c_{3} respectively.
c_{3}=-\frac{5}{3}\left(-\frac{1}{2}\right)c_{3}
Substitute -\frac{1}{2}c_{3} for c_{2} in the equation c_{3}=-\frac{5}{3}c_{2}.
c_{3}=0
Solve c_{3}=-\frac{5}{3}\left(-\frac{1}{2}\right)c_{3} for c_{3}.
c_{2}=-\frac{1}{2}\times 0
Substitute 0 for c_{3} in the equation c_{2}=-\frac{1}{2}c_{3}.
c_{2}=0
Calculate c_{2} from c_{2}=-\frac{1}{2}\times 0.
c_{1}=-5\times 0-3\times 0
Substitute 0 for c_{2} and 0 for c_{3} in the equation c_{1}=-5c_{2}-3c_{3}.
c_{1}=0
Calculate c_{1} from c_{1}=-5\times 0-3\times 0.
c_{1}=0 c_{2}=0 c_{3}=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}