Skip to main content
Solve for c_1, c_2, c_3
Tick mark Image

Similar Problems from Web Search

Share

c_{1}=-5c_{2}-3c_{3}
Solve c_{1}+5c_{2}+3c_{3}=0 for c_{1}.
-2\left(-5c_{2}-3c_{3}\right)+6c_{2}+2c_{3}=0 3\left(-5c_{2}-3c_{3}\right)-c_{2}+c_{2}=0
Substitute -5c_{2}-3c_{3} for c_{1} in the second and third equation.
c_{2}=-\frac{1}{2}c_{3} c_{3}=-\frac{5}{3}c_{2}
Solve these equations for c_{2} and c_{3} respectively.
c_{3}=-\frac{5}{3}\left(-\frac{1}{2}\right)c_{3}
Substitute -\frac{1}{2}c_{3} for c_{2} in the equation c_{3}=-\frac{5}{3}c_{2}.
c_{3}=0
Solve c_{3}=-\frac{5}{3}\left(-\frac{1}{2}\right)c_{3} for c_{3}.
c_{2}=-\frac{1}{2}\times 0
Substitute 0 for c_{3} in the equation c_{2}=-\frac{1}{2}c_{3}.
c_{2}=0
Calculate c_{2} from c_{2}=-\frac{1}{2}\times 0.
c_{1}=-5\times 0-3\times 0
Substitute 0 for c_{2} and 0 for c_{3} in the equation c_{1}=-5c_{2}-3c_{3}.
c_{1}=0
Calculate c_{1} from c_{1}=-5\times 0-3\times 0.
c_{1}=0 c_{2}=0 c_{3}=0
The system is now solved.