Solve for a, k
a=20
k=160
Share
Copied to clipboard
a+3k=500,22a+k=600
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
a+3k=500
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
a=-3k+500
Subtract 3k from both sides of the equation.
22\left(-3k+500\right)+k=600
Substitute -3k+500 for a in the other equation, 22a+k=600.
-66k+11000+k=600
Multiply 22 times -3k+500.
-65k+11000=600
Add -66k to k.
-65k=-10400
Subtract 11000 from both sides of the equation.
k=160
Divide both sides by -65.
a=-3\times 160+500
Substitute 160 for k in a=-3k+500. Because the resulting equation contains only one variable, you can solve for a directly.
a=-480+500
Multiply -3 times 160.
a=20
Add 500 to -480.
a=20,k=160
The system is now solved.
a+3k=500,22a+k=600
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&3\\22&1\end{matrix}\right)\left(\begin{matrix}a\\k\end{matrix}\right)=\left(\begin{matrix}500\\600\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&3\\22&1\end{matrix}\right))\left(\begin{matrix}1&3\\22&1\end{matrix}\right)\left(\begin{matrix}a\\k\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\22&1\end{matrix}\right))\left(\begin{matrix}500\\600\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&3\\22&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\k\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\22&1\end{matrix}\right))\left(\begin{matrix}500\\600\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\k\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\22&1\end{matrix}\right))\left(\begin{matrix}500\\600\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\k\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3\times 22}&-\frac{3}{1-3\times 22}\\-\frac{22}{1-3\times 22}&\frac{1}{1-3\times 22}\end{matrix}\right)\left(\begin{matrix}500\\600\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\k\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{65}&\frac{3}{65}\\\frac{22}{65}&-\frac{1}{65}\end{matrix}\right)\left(\begin{matrix}500\\600\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\k\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{65}\times 500+\frac{3}{65}\times 600\\\frac{22}{65}\times 500-\frac{1}{65}\times 600\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\k\end{matrix}\right)=\left(\begin{matrix}20\\160\end{matrix}\right)
Do the arithmetic.
a=20,k=160
Extract the matrix elements a and k.
a+3k=500,22a+k=600
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
22a+22\times 3k=22\times 500,22a+k=600
To make a and 22a equal, multiply all terms on each side of the first equation by 22 and all terms on each side of the second by 1.
22a+66k=11000,22a+k=600
Simplify.
22a-22a+66k-k=11000-600
Subtract 22a+k=600 from 22a+66k=11000 by subtracting like terms on each side of the equal sign.
66k-k=11000-600
Add 22a to -22a. Terms 22a and -22a cancel out, leaving an equation with only one variable that can be solved.
65k=11000-600
Add 66k to -k.
65k=10400
Add 11000 to -600.
k=160
Divide both sides by 65.
22a+160=600
Substitute 160 for k in 22a+k=600. Because the resulting equation contains only one variable, you can solve for a directly.
22a=440
Subtract 160 from both sides of the equation.
a=20
Divide both sides by 22.
a=20,k=160
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}