Solve for x_2, x_3, x_1
x_{2} = \frac{16}{9} = 1\frac{7}{9} \approx 1.777777778
x_{3}=2
x_{1} = \frac{77}{9} = 8\frac{5}{9} \approx 8.555555556
Share
Copied to clipboard
x_{3}=\frac{-2}{-1}
Consider the second equation. Divide both sides by -1.
x_{3}=2
Fraction \frac{-2}{-1} can be simplified to 2 by removing the negative sign from both the numerator and the denominator.
9x_{2}-7\times 2=2
Consider the first equation. Insert the known values of variables into the equation.
9x_{2}-14=2
Multiply -7 and 2 to get -14.
9x_{2}=2+14
Add 14 to both sides.
9x_{2}=16
Add 2 and 14 to get 16.
x_{2}=\frac{16}{9}
Divide both sides by 9.
-3x_{1}+6\times \frac{16}{9}+8\times 2=1
Consider the third equation. Insert the known values of variables into the equation.
-3x_{1}+\frac{32}{3}+8\times 2=1
Multiply 6 and \frac{16}{9} to get \frac{32}{3}.
-3x_{1}+\frac{32}{3}+16=1
Multiply 8 and 2 to get 16.
-3x_{1}+\frac{80}{3}=1
Add \frac{32}{3} and 16 to get \frac{80}{3}.
-3x_{1}=1-\frac{80}{3}
Subtract \frac{80}{3} from both sides.
-3x_{1}=-\frac{77}{3}
Subtract \frac{80}{3} from 1 to get -\frac{77}{3}.
x_{1}=\frac{-\frac{77}{3}}{-3}
Divide both sides by -3.
x_{1}=\frac{-77}{3\left(-3\right)}
Express \frac{-\frac{77}{3}}{-3} as a single fraction.
x_{1}=\frac{-77}{-9}
Multiply 3 and -3 to get -9.
x_{1}=\frac{77}{9}
Fraction \frac{-77}{-9} can be simplified to \frac{77}{9} by removing the negative sign from both the numerator and the denominator.
x_{2}=\frac{16}{9} x_{3}=2 x_{1}=\frac{77}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}