Solve for x, y, z
x = \frac{153125000075}{24} = 6380208336\frac{11}{24} \approx 6380208336.458333333
y=87500i
z=25i
Share
Copied to clipboard
y=3500\times \left(25i\right)
Consider the second equation. Insert the known values of variables into the equation.
y=87500i
Multiply 3500 and 25i to get 87500i.
75-24x=20\times \left(87500i\right)^{2}
Consider the first equation. Insert the known values of variables into the equation.
75-24x=20\left(-7656250000\right)
Calculate 87500i to the power of 2 and get -7656250000.
75-24x=-153125000000
Multiply 20 and -7656250000 to get -153125000000.
-24x=-153125000000-75
Subtract 75 from both sides.
-24x=-153125000075
Subtract 75 from -153125000000 to get -153125000075.
x=\frac{-153125000075}{-24}
Divide both sides by -24.
x=\frac{153125000075}{24}
Fraction \frac{-153125000075}{-24} can be simplified to \frac{153125000075}{24} by removing the negative sign from both the numerator and the denominator.
x=\frac{153125000075}{24} y=87500i z=25i
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}