Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x=\frac{9}{5}y-\frac{7}{5}z-\frac{7}{5}
Solve 5x-9y+7z=-7 for x.
7\left(\frac{9}{5}y-\frac{7}{5}z-\frac{7}{5}\right)-6y+2z=2
Substitute \frac{9}{5}y-\frac{7}{5}z-\frac{7}{5} for x in the equation 7x-6y+2z=2.
y=\frac{59}{33}+\frac{13}{11}z z=\frac{1}{2}y+\frac{3}{8}
Solve the second equation for y and the third equation for z.
z=\frac{1}{2}\left(\frac{59}{33}+\frac{13}{11}z\right)+\frac{3}{8}
Substitute \frac{59}{33}+\frac{13}{11}z for y in the equation z=\frac{1}{2}y+\frac{3}{8}.
z=\frac{335}{108}
Solve z=\frac{1}{2}\left(\frac{59}{33}+\frac{13}{11}z\right)+\frac{3}{8} for z.
y=\frac{59}{33}+\frac{13}{11}\times \frac{335}{108}
Substitute \frac{335}{108} for z in the equation y=\frac{59}{33}+\frac{13}{11}z.
y=\frac{589}{108}
Calculate y from y=\frac{59}{33}+\frac{13}{11}\times \frac{335}{108}.
x=\frac{9}{5}\times \frac{589}{108}-\frac{7}{5}\times \frac{335}{108}-\frac{7}{5}
Substitute \frac{589}{108} for y and \frac{335}{108} for z in the equation x=\frac{9}{5}y-\frac{7}{5}z-\frac{7}{5}.
x=\frac{110}{27}
Calculate x from x=\frac{9}{5}\times \frac{589}{108}-\frac{7}{5}\times \frac{335}{108}-\frac{7}{5}.
x=\frac{110}{27} y=\frac{589}{108} z=\frac{335}{108}
The system is now solved.