Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x=\frac{4}{5}y+\frac{1}{5}
Solve 5x-4y=1 for x.
-4\left(\frac{4}{5}y+\frac{1}{5}\right)+11y-5z=2
Substitute \frac{4}{5}y+\frac{1}{5} for x in the equation -4x+11y-5z=2.
y=\frac{14}{39}+\frac{25}{39}z z=\frac{5}{8}y-\frac{3}{8}
Solve the second equation for y and the third equation for z.
z=\frac{5}{8}\left(\frac{14}{39}+\frac{25}{39}z\right)-\frac{3}{8}
Substitute \frac{14}{39}+\frac{25}{39}z for y in the equation z=\frac{5}{8}y-\frac{3}{8}.
z=-\frac{47}{187}
Solve z=\frac{5}{8}\left(\frac{14}{39}+\frac{25}{39}z\right)-\frac{3}{8} for z.
y=\frac{14}{39}+\frac{25}{39}\left(-\frac{47}{187}\right)
Substitute -\frac{47}{187} for z in the equation y=\frac{14}{39}+\frac{25}{39}z.
y=\frac{37}{187}
Calculate y from y=\frac{14}{39}+\frac{25}{39}\left(-\frac{47}{187}\right).
x=\frac{4}{5}\times \frac{37}{187}+\frac{1}{5}
Substitute \frac{37}{187} for y in the equation x=\frac{4}{5}y+\frac{1}{5}.
x=\frac{67}{187}
Calculate x from x=\frac{4}{5}\times \frac{37}{187}+\frac{1}{5}.
x=\frac{67}{187} y=\frac{37}{187} z=-\frac{47}{187}
The system is now solved.