Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

z=5x+3y-6
Solve 5x+3y-z=6 for z.
4x+5y-10\left(5x+3y-6\right)=4 2x+8y-3\left(5x+3y-6\right)=2
Substitute 5x+3y-6 for z in the second and third equation.
y=\frac{56}{25}-\frac{46}{25}x x=-\frac{1}{13}y+\frac{16}{13}
Solve these equations for y and x respectively.
x=-\frac{1}{13}\left(\frac{56}{25}-\frac{46}{25}x\right)+\frac{16}{13}
Substitute \frac{56}{25}-\frac{46}{25}x for y in the equation x=-\frac{1}{13}y+\frac{16}{13}.
x=\frac{344}{279}
Solve x=-\frac{1}{13}\left(\frac{56}{25}-\frac{46}{25}x\right)+\frac{16}{13} for x.
y=\frac{56}{25}-\frac{46}{25}\times \frac{344}{279}
Substitute \frac{344}{279} for x in the equation y=\frac{56}{25}-\frac{46}{25}x.
y=-\frac{8}{279}
Calculate y from y=\frac{56}{25}-\frac{46}{25}\times \frac{344}{279}.
z=5\times \frac{344}{279}+3\left(-\frac{8}{279}\right)-6
Substitute -\frac{8}{279} for y and \frac{344}{279} for x in the equation z=5x+3y-6.
z=\frac{22}{279}
Calculate z from z=5\times \frac{344}{279}+3\left(-\frac{8}{279}\right)-6.
x=\frac{344}{279} y=-\frac{8}{279} z=\frac{22}{279}
The system is now solved.