Solve for x, y, z
x = \frac{344}{279} = 1\frac{65}{279} \approx 1.23297491
y=-\frac{8}{279}\approx -0.028673835
z=\frac{22}{279}\approx 0.078853047
Share
Copied to clipboard
z=5x+3y-6
Solve 5x+3y-z=6 for z.
4x+5y-10\left(5x+3y-6\right)=4 2x+8y-3\left(5x+3y-6\right)=2
Substitute 5x+3y-6 for z in the second and third equation.
y=\frac{56}{25}-\frac{46}{25}x x=-\frac{1}{13}y+\frac{16}{13}
Solve these equations for y and x respectively.
x=-\frac{1}{13}\left(\frac{56}{25}-\frac{46}{25}x\right)+\frac{16}{13}
Substitute \frac{56}{25}-\frac{46}{25}x for y in the equation x=-\frac{1}{13}y+\frac{16}{13}.
x=\frac{344}{279}
Solve x=-\frac{1}{13}\left(\frac{56}{25}-\frac{46}{25}x\right)+\frac{16}{13} for x.
y=\frac{56}{25}-\frac{46}{25}\times \frac{344}{279}
Substitute \frac{344}{279} for x in the equation y=\frac{56}{25}-\frac{46}{25}x.
y=-\frac{8}{279}
Calculate y from y=\frac{56}{25}-\frac{46}{25}\times \frac{344}{279}.
z=5\times \frac{344}{279}+3\left(-\frac{8}{279}\right)-6
Substitute -\frac{8}{279} for y and \frac{344}{279} for x in the equation z=5x+3y-6.
z=\frac{22}{279}
Calculate z from z=5\times \frac{344}{279}+3\left(-\frac{8}{279}\right)-6.
x=\frac{344}{279} y=-\frac{8}{279} z=\frac{22}{279}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}