Solve for x, y, z
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
y=-7
z = \frac{9}{4} = 2\frac{1}{4} = 2.25
Share
Copied to clipboard
x=\frac{7}{2}
Consider the second equation. Divide both sides by 2.
-4\times \frac{7}{2}+y=-21
Consider the third equation. Insert the known values of variables into the equation.
-14+y=-21
Multiply -4 and \frac{7}{2} to get -14.
y=-21+14
Add 14 to both sides.
y=-7
Add -21 and 14 to get -7.
5\times \frac{7}{2}+2\left(-7\right)-2z=-1
Consider the first equation. Insert the known values of variables into the equation.
\frac{35}{2}+2\left(-7\right)-2z=-1
Multiply 5 and \frac{7}{2} to get \frac{35}{2}.
\frac{35}{2}-14-2z=-1
Multiply 2 and -7 to get -14.
\frac{7}{2}-2z=-1
Subtract 14 from \frac{35}{2} to get \frac{7}{2}.
-2z=-1-\frac{7}{2}
Subtract \frac{7}{2} from both sides.
-2z=-\frac{9}{2}
Subtract \frac{7}{2} from -1 to get -\frac{9}{2}.
z=\frac{-\frac{9}{2}}{-2}
Divide both sides by -2.
z=\frac{-9}{2\left(-2\right)}
Express \frac{-\frac{9}{2}}{-2} as a single fraction.
z=\frac{-9}{-4}
Multiply 2 and -2 to get -4.
z=\frac{9}{4}
Fraction \frac{-9}{-4} can be simplified to \frac{9}{4} by removing the negative sign from both the numerator and the denominator.
x=\frac{7}{2} y=-7 z=\frac{9}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}