Solve for a, b
a=3
b=4
Share
Copied to clipboard
5a-6b=-9,10a+7b=58
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5a-6b=-9
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
5a=6b-9
Add 6b to both sides of the equation.
a=\frac{1}{5}\left(6b-9\right)
Divide both sides by 5.
a=\frac{6}{5}b-\frac{9}{5}
Multiply \frac{1}{5} times 6b-9.
10\left(\frac{6}{5}b-\frac{9}{5}\right)+7b=58
Substitute \frac{6b-9}{5} for a in the other equation, 10a+7b=58.
12b-18+7b=58
Multiply 10 times \frac{6b-9}{5}.
19b-18=58
Add 12b to 7b.
19b=76
Add 18 to both sides of the equation.
b=4
Divide both sides by 19.
a=\frac{6}{5}\times 4-\frac{9}{5}
Substitute 4 for b in a=\frac{6}{5}b-\frac{9}{5}. Because the resulting equation contains only one variable, you can solve for a directly.
a=\frac{24-9}{5}
Multiply \frac{6}{5} times 4.
a=3
Add -\frac{9}{5} to \frac{24}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
a=3,b=4
The system is now solved.
5a-6b=-9,10a+7b=58
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&-6\\10&7\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-9\\58\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&-6\\10&7\end{matrix}\right))\left(\begin{matrix}5&-6\\10&7\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\10&7\end{matrix}\right))\left(\begin{matrix}-9\\58\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&-6\\10&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\10&7\end{matrix}\right))\left(\begin{matrix}-9\\58\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\10&7\end{matrix}\right))\left(\begin{matrix}-9\\58\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-\left(-6\times 10\right)}&-\frac{-6}{5\times 7-\left(-6\times 10\right)}\\-\frac{10}{5\times 7-\left(-6\times 10\right)}&\frac{5}{5\times 7-\left(-6\times 10\right)}\end{matrix}\right)\left(\begin{matrix}-9\\58\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{7}{95}&\frac{6}{95}\\-\frac{2}{19}&\frac{1}{19}\end{matrix}\right)\left(\begin{matrix}-9\\58\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{7}{95}\left(-9\right)+\frac{6}{95}\times 58\\-\frac{2}{19}\left(-9\right)+\frac{1}{19}\times 58\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Do the arithmetic.
a=3,b=4
Extract the matrix elements a and b.
5a-6b=-9,10a+7b=58
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10\times 5a+10\left(-6\right)b=10\left(-9\right),5\times 10a+5\times 7b=5\times 58
To make 5a and 10a equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 5.
50a-60b=-90,50a+35b=290
Simplify.
50a-50a-60b-35b=-90-290
Subtract 50a+35b=290 from 50a-60b=-90 by subtracting like terms on each side of the equal sign.
-60b-35b=-90-290
Add 50a to -50a. Terms 50a and -50a cancel out, leaving an equation with only one variable that can be solved.
-95b=-90-290
Add -60b to -35b.
-95b=-380
Add -90 to -290.
b=4
Divide both sides by -95.
10a+7\times 4=58
Substitute 4 for b in 10a+7b=58. Because the resulting equation contains only one variable, you can solve for a directly.
10a+28=58
Multiply 7 times 4.
10a=30
Subtract 28 from both sides of the equation.
a=3
Divide both sides by 10.
a=3,b=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}